摘要
以风力发电系统为背景,由于风速波动及风机叶片扫掠面积上风资源的不均匀分布,风机叶片的变桨需要根据自身风况单独控制,即实现独立变桨.提出一种基于RBF(径向基函数)神经网络的滑模控制策略,优化了风机变桨距的控制方法,提高了风力发电系统的稳定性.将算法植入10 kW风机缩比模型实验台,控制伺服变桨电机,实验台模拟运行结果表明,RBF神经网络滑模控制策略能够改善变桨控制的效果,提高系统的鲁棒性.
For the wind power generation system, wind speed is fluctuant and wind resource distribution is uneven in the wind turbine blade sweep area, so the wind turbine blade needs to be controlled separately according to its own wind condition to achieve independ ence pitch control. A method was presented based on RBF ( Radial Basis Function) neural network sliding mode control strategy, which optimized the turbine pitch control methods and improved the stability of wind power generation system. The algorithm is implan ted in the experimental platform of 10kW wind turbine scale model to control the servo motor. The simulation run results show that, the RBF neural network sliding mode control strategy can improve the effect of the variable pitch control and improve the system robustness.
出处
《内蒙古科技大学学报》
CAS
2014年第1期63-65,共3页
Journal of Inner Mongolia University of Science and Technology
关键词
独立变桨控制
RBF神经网络
滑模控制
independence pitch control, RBF neural network, sliding mode control