期刊文献+

基于词包模型的高分辨率SAR图像变化检测与分析 被引量:3

Change Detection and Analysis of High Resolution Synthetic Aperture Radar Images Based on Bag-of-words Model
下载PDF
导出
摘要 该文面向高分辨率SAR图像解译中的变化检测问题,针对其研究现状与难点,重点解决高分辨率SAR图像变化检测中的语义信息缺失问题,提出一种基于词包模型的变化检测与分析的方法。该方法利用词包模型,对两个时相的图像做词包表征,将视觉直方图的差作为变化向量进行分析。由于变化向量包含有语义信息,因此可通过对其分析,结合像素级变化结果,实现对变化区域的语义分析及感兴趣变化类型检测。经实验验证,该框架对高分SAR影像变化语义分析具有应用前景。 This paper discusses the change detection in high-resolution SAR image interpretation. Referring to the unfavorable elements in the change detection and the status quo, this paper focuses on resolving the semantic information deficiency problem in SAR image change detection. A method named change detection base on Bag of Words Model (BoWM) is proposed. By using the BoWM, two visual histograms of two different temporal images are obtained, and the histogram difference, which contains semantic information, is defined as the change vector. By analyzing the change vector and combining it with the statistical change detection method, the semantic analysis and interest change-type detection of the change area can be obtained. Experiments show that the proposed method may be applicable to the semantic analysis of the change area in high-resolution SAR images.
出处 《雷达学报(中英文)》 CSCD 2014年第1期101-110,共10页 Journal of Radars
基金 国家"973"计划项目(2010cb731904) 国家自然科学基金(61331015)资助课题
关键词 变化检测 语义分析 词包模型(BoWM) High resolution SAR Change detection Semantic analysis Bag of Words Model (BoWM)
  • 相关文献

参考文献6

二级参考文献43

  • 1舒士畏 赵立平.雷达图像及其应用[M].北京:中国铁道出版社,1999..
  • 2Oliva A, Tonalba A. Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3) : 145 - 175.
  • 3Vogel J, Schiele B. Semantic modeling of natural scenes for content-based image retrieval[ J]. International Journal of Computer Vision,2007,72(2):133 - 157.
  • 4Nowak E, Jurie F, Triggs B. Sampling strategies for bag-of-features image classification[A]. Proc of European Conference on Computer Vision (ECCV'06) [ C]. Austria: Springer, 2006.490 - 503.
  • 5Van Gemert J, G-eusebroek J, Veenman C, Snoek C, Smeulders A. Robust scene categorization by learning image statistics in context[A]. Proc of Int. Conf. on Computer Vision and Pattern Recognition Workshop (CVPRW'06)[C]. USA. IEEE Computer Society,2006. 105 - 122.
  • 6Fei-Fei L,Perona P.A Bayesian hierarchical model for learning natural scene categories [ A]. Proc. of IEEE Int. Conf. on Computer Vision and Pattern Reeosnition (CVPR'05) [ C]. USA: IEEE Computer Society,2005.524- 531.
  • 7Bosch A,Zisserman A. Scene classification using a hybrid generative/discriminative approach [J].IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(4) :712 - 727.
  • 8Jingen L, Mubarak S. Scene Modeling Using Co-Clustering [ A ]. Proc of IEEE Int. Conf on Computer Vsion ( ICCV'07) [ C ]. Brazil: IEEE Computer Society 2007.1 - 7.
  • 9Lazebnik S,Schmid C,Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[A].Proc.of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR'06) [ C ]. USA: IEEE Computer Society, 2006.2169 - 2178.
  • 10Oliva A, Torralba A. The role of context in object recognition [ J]. TRENDS in Cognitive Sciences, 2007, 11 (12) : 520 - 527.

共引文献200

同被引文献31

  • 1尤红建,付琨.合成孔径雷达图像精准处理[M].北京:科学出版社,2011:2.
  • 2Evans T L and Costa M. Landcover classification of the lower nhecolandia subregion of the brazilian pantanal wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery[J]. Remote Sensing of Environment, 2013, 128: 118-137.
  • 3Refice A, Capolongo D, Lepera A, et al.. SAR and InSAR for flood monitoring: examples with COSMO/SkyMed data[C]. IEEE Geoscience and Remote Sensing Symposium, Melbourne, VIC, 2013: 703-706.
  • 4Federica B, Luigi T, Claudio P, et al.. Shoreline detection: capability of COSMO-SkyMed and high-resolution multispectral images[J]. European Journal of Remote Sensing, 2013, 46: 837-853.
  • 5Liao M, Jiang L, Lin H, et al.. Urban change detection based on coherence and intensity characteristics of SAR imagery[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(8): 999-1006.
  • 6Gong M, Li Y, Jiao L, et al.. SAR change detection based on intensity and texture changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 93(7): 123-135.
  • 7Dierking W and Skriver H. Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 618-636.
  • 8Lefort A, Grippa M, Walker N, et al.. Change detection across the Nasca pampa using spaceborne SAR interferometry[J]. International Journal of Remote Sensing, 2004, 25(10): 1799-1803.
  • 9Bazi Y, Bruzzone L, and Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 874-887.
  • 10Achanta R, Shaji A, Smith K, et al.. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274-2282.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部