摘要
【目的】探索适合圈养林麝Moschus berezorskii的生长曲线模型。【方法】采用Logistic、Gompertz、Log-modified、Log-logistic、Gauss、幂函数曲线、二次曲线、指数函数、双曲线、负指数函数模型对圈养林麝体重、肩高和体长生长曲线进行拟合,并将实际观测值与拟合值进行验证。【结果】幂函数模型能够很好地拟合圈养林麝体重、肩高和体长的生长过程,其拟合方程分别为y=2.237 2x0.388114(R2=0.992 6),y=28.380 2x0.159911(R2=0.987 5)和y=48.159 5x0.164618(R2=0.961 3)。【结论】圈养林麝生长发育不符合"S型"曲线的生长规律,而是更接近幂函数型。
[Objective] The aim of this study is to detect the growth curve model of the forest musk deer (Moschus berezorskii). [Method] Logistic, Gompertz, Log-modified, Log-logistic, Gauss, power function, conic, exponential function, hyperbolic function and negative exponential func- tion models were chosen as the candidates for fitting the growth model of bodyweight, shoulder height and body length of the forest musk deer. [Results] Power function model had the best fit- ting performance which could reflect bodyweight, shoulder height and body length growth charac- teristics of the forest musk deer, with fitted equation y = 2. 237 2X~'a88114 (Rz = 0. 992 6), y = 28. 380 2x^0.159911 (R^2 =0. 987 5) and y=48. 159 5x^0.164618 (R^2 =0. 961 3), respectively. [Conclusion] The growth model of bodyweight, shoulder height and body length for the forest musk deer fitted power function curve rather than single S growth curve.
出处
《四川农业大学学报》
CSCD
北大核心
2014年第1期97-102,共6页
Journal of Sichuan Agricultural University
基金
重庆市卫生局重点项目(2012-1-14)
重庆市卫生局中医药科技项目(2012-2-150)
关键词
林麝
生长曲线
幂函数模型
forest musk deer (Moschus berezorskii)
growth curve
power function