期刊文献+

SVM在监控小批量生产中的应用及比较分析 被引量:3

Comparison Analysis and Application of SVM in the Monitor of Small Batch Production
下载PDF
导出
摘要 SPC控制图(如EWMA和CUSUM控制图)常用来监控过程均值的漂移,特别是对微小漂移具有较好的敏感性,但对于复杂数据无法进行有效的智能分析和内部规律总结,不能及时报告有失控趋势的样本点。针对上述问题提出一种对监控过程漂移更加敏感、智能化的方法——基于支持向量机(SVM)的分析模式,并对该模型的精度做了相关分析。仿真结果显示:与EWMA和CUSUM控制图相比,该模型能更加及时地发现有失控趋势或失控的样本点。 SPC control chart (such as EWMA and CUSUM control chart) can be used to monitor the process mean,which especially has good sensitivity to small shift.But because these control charts for complex data could not have effective intelligent analysis and internal regularity,and no report of trend of sample points in time,this paper presents a new method for monitoring the process shift more sensitively and intelligently—based on support vector machine (SVM) analysis model,and the precision of the model makes the correlation analysis.Through the simulation,and compared with EWMA and CUSUM control chart methods,results show that the model is better than EWMA and CUSUM control charts can more timely find out trends or out of sample points.
机构地区 河海大学理学院
出处 《重庆理工大学学报(自然科学)》 CAS 2014年第3期140-144,共5页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(50979029) 河海大学自然科学基金资助项目(2008431111)
关键词 支持向量机(SVM) 智能化 内部规律 support vector machine(SVM) intelligentialize internal rules
  • 相关文献

参考文献10

  • 1HawkinsDM.Multivariatequalitycontrolbasedonregressionadjustedvariables[J].Technometrics,1991,33(1):61-75.
  • 2LowryCA,WoodallW H,ChampCW,etal.AmultivariateEWMAcontrolchart[J].Technometrics,1992,34(1):46-53.
  • 3KramerHG,SchminW.EWMAchartsformultivariatetimeseries[J].SequentialAnalysis,1997,16(2):131-154.
  • 4VapnikV,LevinE,LeCY.MeasuringtheVCDimensionofaLearningMachine[J].NeuralComputation,1994(6):851-876.
  • 5ScholkopfB.StatisticalLearningandKernelMethods[R].MicrosoftResearchLimited.http://research.microsoft.com/~bsc,2000-02-29.
  • 6RosenblattF.PrinciplesofNeurodynamics:PerceptionandTheoryofBrainMechanisms[M].SpartanBook,WashingtonDC,1962,1-5.
  • 7谢赤,罗长青,王蓓.财务困境预警SVM模型的构建及实证研究[J].当代经济科学,2007,29(6):96-100. 被引量:11
  • 8王越,吕奇峰,王泉,曾晶.一种改进的支持向量机序列最小优化算法[J].重庆理工大学学报(自然科学),2013,27(3):76-79. 被引量:6
  • 9刘子先,武立玮,姬升启.一种面向成本预测控制的方法研究[J].系统工程学报,2006,21(6):659-662. 被引量:10
  • 10ApnikV.统计学习理论的本质[M].北京:清华大学出版社,2000.

二级参考文献25

  • 1张玲,陈收,张昕.基于多元判别分析和神经网络技术的公司财务困境预警[J].系统工程,2005,23(11):49-56. 被引量:35
  • 2李琳,张晓龙.基于RBF核的SVM学习算法的优化计算[J].计算机工程与应用,2006,42(29):190-192. 被引量:41
  • 3Montgomery D C.Introduction to Statistical Quality Control[M].5th edition,NY:John Wiley & Sons,2004.
  • 4Kaplan P,Atkinson A A.Advanced Management Accounting[ M].3rd edition,NY:Prentice Hall,1998.
  • 5Farouq S M.Neural network model-based predictive control of liquid-liquid extraction contactors[ J].Chemical Engineering Science,2005,60(1):239-253.
  • 6Abudayyeh O,Temel B.An intranet-based cost control system[ J].Advances in Engineering Software,2001,32(2):87-94.
  • 7Shtub A,Zimerman Y.A neural-network-based approach for estimating the cost of assembly systems[ J].International Journal of Production Economics,1993,32(2):189-207.
  • 8Grudnitski G,Osburn L.Forecasting S & P and gold futures prices:an application of neural networks[J].Journal of Futures Markets,1993,13(6):631-643.
  • 9Page E S.Continuous inspection schemes[J].Biometrika,1954,41(1-2):100-115.
  • 10Patrick F.A comparison of ratios of successful industrial enterprises with those of failed firms[J].Certified Public Accountant,1932,6:727-731.

共引文献24

同被引文献42

  • 1乐清洪,滕霖,朱名铨,王润孝.质量控制图在线智能诊断分析系统[J].计算机集成制造系统,2004,10(12):1583-1587. 被引量:17
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:146
  • 3吴少雄.智能统计工序质量控制的体系研究[J].计算机集成制造系统,2006,12(11):1832-1837. 被引量:12
  • 4李常有,徐敏强,郭耸.基于改进的Hilbert-Huang变换的滚动轴承故障诊断[J].振动与冲击,2007,26(4):39-41. 被引量:18
  • 5Gu K,Jia X,You H.A T-chart for Monitoring Multi -variety and Small Batch Production Run[J].Quality and Reliability Engineering International, 2013, 30 (2) :287-299.
  • 6Petros X, Talayeh R. A Weighted Support Vector Machine Method for Control Chart Pattern Recogni- tion [J]. Computers Industrial Engineering, 2014, 70:134-149.
  • 7Shichang D, Delin H. Recognition of Concurrent Control Chart Patterns Using Wavelet Transform Decomposition and Multielass Support Vector Ma- chines [J]. Computers Industrial Engineering, 2013, 66: 683-695.
  • 8Ata E, Jalil A, Vahid R. Recognition of Control Chart Patterns Using an Inte[|igent Technique[J]. Applied Soft Computing,2013, 13: 2970-2980.
  • 9Susanta K G, Shankar C. Recognition of Control Chart Patterns Using Improved Selection of Fea- tures [J]. Computers Industrial Engineering, 2009, 56:1577-1588.
  • 10Vahid R, Ata E. Control Chart Pattern Recognition Using a Novel Hybrid Intelligent Method[J]. Ap- plied Soft Computing, 2011,11: 2676-2686.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部