期刊文献+

Notes on well-posedness for the b-family equation

b-family方程局部适定性注记(英文)
下载PDF
导出
摘要 The local well-posedness for the b-family equation in the critical space is studied.Applying the Littlewood-Paley decomposition method in the critical Besov spaces Bs2r with the index s=3/2 which is the generalization space of the Sobolev spaces Hs it is established that there is a maximal time T=Tu0>0 such that for the b-family equation there exists a unique solution utx∈C0TB3/221∩C10TB121 when the initial variable u0x ∈B3/221 is the critical regularity. Moreover the solution uxt depends continuously on the initial data u0x .Furthermore using the abstract Cauchy-Kowalevski theorem to prove the analytic regularity of the solutions for the b-family equation in a suitable scale of Banach spaces E it is shown that the solutions of the b-family are analytic in both variables globally in space and locally in time when the initial data is analytic. 首先研究了b-family方程在临界空间中的局部适定性.在参数为s=3/2的临界Besov空间Bs2,r(该空间是Sobolev空间Hs的一种推广形式)中,采用Littlewood-Paley分解方法,得到当初值u0(x)∈B3/22,1为临界正则时,存在最长时间T=T(u0)>0,使得b-family方程有唯一解u(t,x)∈C[0,T];B3/22,()1∩C1([0,T];B12,1),且解u(x,t)是连续依赖于初值u0(x).进一步,在合适的Besov尺度空间E中,运用抽象的CauchyKow alevski定理研究b-family方程解的解析性,证得:当初值是解析的,则该方程解在全空间和局部时间内也是解析的.
作者 朱敏
出处 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期128-134,共7页 东南大学学报(英文版)
基金 The Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.13KJB110012)
关键词 b-family equation Besov space local well-pos-edness b-family方程 Besov空间 局部适定性
  • 相关文献

参考文献17

  • 1Constantin A, Ivanov R. On the integrable two-compo- nent Camassa-Holm shallow water system[J].Phys Lett A, 2008, 372(48): 7129-7132.
  • 2Ivanov R. Two-component integrable systems modelling shallow water waves: the constant vorticity case [J].Wave Motion, 2009, 46(6): 389-396.
  • 3Olver P, Rosenau P. Tri-Hamiltonian duality between solitons and solitary wave solutions having compact sup- port[J].Phys Rev E, 1996, 53(2) : 1900- 1906.
  • 4Zhu M, Xu J X. On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm sys- tem[J]. J Math Anal Appl, 2012, 391(2): 415-428.
  • 5Dullin R, Gottwald G, Holm D. An integrable shallow water equation with linear and nonlinear dispersion [J]. Phys Rev Lett, 2001, 87(19) : 4501 -4504.
  • 6Holm D D, Staley M F. Wave structure and nonlinear balances in a family of evolutionary PDEs[J]. SIAM J Appl Dyn Syst, 2003, 2(3) : 323 -380.
  • 7Camassa R, Holm D D. An integrable shallow water equation with peaked solitons [ J]. Phys Rev Lett, 1993, 71(11) : 1661 -1664.
  • 8Degasperis A, Holm D D, Hone A N W. A new integral equation with peakon solutions [J]. Theoret Math Phys, 2002, 13(2) : 1463 - 1474.
  • 9Dullin R, Gottwald G, Holm D, et al. Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves[ J ]. Fluid Dyn Res, 2003, 33(1/2):73-79.
  • 10Ivanov R. Water waves and integrability [J]. Philos Trans Roy Soc, 2007, 365(1858) : 2267 -2280.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部