期刊文献+

基于螺旋片强化的套管换热器性能 被引量:7

Performance of double-pipe heat exchanger enhanced by helical fins
下载PDF
导出
摘要 基于RNGκ-ε模型对螺旋片强化的套管换热器的传热进行模拟,通过模拟结果与文献中的实验结果进行对比来验证模拟的可行性;分析了Reynolds数为2362-16860范围内的螺旋升角α变化对Nusselt数和摩擦阻力系数f的影响;并考察了等泵功率下的综合传热性能PEC值的变化规律。结果表明:Nu和f的平均误差分别为7.1%和1.3%,证明所采用的研究方法是可行的;α在15°~75°范围内,Nu和f均随着α的减小而增大,特别地,当α小于35°时,f随α的减小剧烈增大;在等泵功率下,PEC值为0.84~1.93;α在15°~45°时,α为35°具有较好的综合传热性能,α为55°、65°和75°时,虽然其PEC值比35°时略高,但其Nu与35°时相比要小很多,实际应用中考虑到传热速率的问题,选择35。的螺旋升角较为合适,此时,PEC值为1.26~1.62。另外,为减小f,提出倾斜螺旋片强化的方法;螺旋升角α为35°、螺旋片倾斜角β为10°时,与普通螺旋片相比,Nu基本一致,甚至略大,而厂减小了12.5%~14.5%,此时,PEC值为1-38~1.71;场协同理论也很好地验证了这一结果。 In this paper, RiNG κ-ε model is used to simulate the heat transfer of a double-pipe heat exchanger enhanced by helical fins. The simulation results are verified with experimental results. With the Reynolds number from 2362 to 16860, the effect of helix angle α on the Nusselt number and frictional resistance coefficient fare analyzed. The change of performance evaluation criteria(PEC) value and the comprehensive heat transfer performance at the same pump power are examined. The average error of Nu and f are 7.1% and 1.3%, respectively, indicating that the method used is appropriate. For α from 15° to 75°, both Nu and f increase asα decreases. In particular, for α values less than 35°, f increases dramatically as a decreases. With the same pump power, the value of PEC varies from 0.84 to 1.93. In the α range from 15° to 45°, the comprehensive heat transfer performance is better with 35°. Although the PEC values with α of 55°, 65° and 75° are slightly higher than that of 35°, Nu is much smaller. Considering the rate of heat transfer in applications, helix angle of 35° is more appropriate, with PEC of 1.26--1.62. Besides, it is proposed to use oblique helical fins to reduce the value off Compared with double-pipe heat exchanger enhanced by common helical fins, the Nu value of that enhanced by oblique helical fins with α of 35° and fl of 10° is a little higher, f is reduced by 12.5%--14.5%, and PEC variesfrom 1.38-1.71. The field synergy principle also verifies the result.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第4期1208-1214,共7页 CIESC Journal
基金 河南省科技创新杰出青年人才计划项目(124100510020)~~
关键词 传热 套管式换热器 螺旋片 螺旋升角 数学模拟 计算流体力学 heat transfer double-pipe heat exchanger helical fins helix angle mathematical modeling computational fluid dynamics
  • 相关文献

参考文献21

  • 1Ke Rubai(柯如柏).Experiment and analysis of gas heat transfer reinforcement method and theory of casing heat exchanger [J].制冷学报,1989(4):4-8.
  • 2ZHANG L,GUO H M,WU J H et al. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators[J].传热传质,2012,48(7):1113-1124.
  • 3张丽,田密密,吴剑华.螺旋片强化的套管式换热器壳侧传热特性[J].高校化学工程学报,2011,25(1):24-29. 被引量:15
  • 4朱登亮,吴金星,魏新利,乔慧芳.螺旋折流片强化换热器壳程传热数值分析[J].化工进展,2006,25(z1):392-395. 被引量:3
  • 5Yang Shiming(杨世铭).Heat Transfer (传热学)[M].Tao Wenquan(陶文铨).Beijing(北京):Higher Education Press,2006:229-300.
  • 6Wu Jianhua(吴剑华),Zhang Li(张丽).Fluid flow and compound heat transfer enhancement for shell side of double-Pipe heat exchanger enhanced by helical fins [D].Tianjin:Tianjin University,2011.
  • 7SHOU S, CHIHNG T L, ANTHONY C K.Heat transfer coefficients of double pipe heat exchanger with helical type roughened surface[J].Heat Recovery Systems and CHP,1987,7(2):119-127.
  • 8ZHANG L,DU W J, WU J H,et al. Fluid flow characteristics for shell side of double-pipe heat exchanger with helical fins and pin fins[J].Experimental Thermal and Fluid Science,2012,36(1):30-43.
  • 9董其伍,刘敏珊,赵晓冬.杆栅支撑纵流壳程换热器壳侧流体流动与传热的数值模拟[J].化工学报,2006,57(5):1073-1078. 被引量:22
  • 10王定标,王宏斌,梁珍祥.扭曲三叶管传热与流阻性能的数值研究[J].化工学报,2012,63(7):2064-2069. 被引量:21

二级参考文献70

共引文献217

同被引文献51

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部