期刊文献+

甜高粱可溶性酸性转化酶基因(SAI-1)cDNA全长克隆及表达分析 被引量:3

Full Length cDNA Cloning and Expression Analysis of Soluble Acid Invertase Gene(SAI-1) in Sweet Sorghum(Sorghum bicolor)
原文传递
导出
摘要 可溶性酸性转化酶(SAI)是甜高粱蔗糖代谢关键调控酶。本研究利用RT-PCR的方法,克隆得到了甜高粱SAI-1基因cDNA全长序列(Genbank No.:KF921516),并利用生物信息学方法对其结构以及蛋白功能进行了分析。结果表明:克隆得到的SAI-1 cDNA序列长2 345 bp,包含一个2 025 bp的编码区、210 bp的5'非翻译区和110 bp的3'非翻译区。其编码674个氨基酸蛋白,预测分子量为73.42 kD,等电点为5.76,蛋白序列含有一个完整的糖基水解酶家族32结构域,具有水解蔗糖的作用。甜高粱茎秆中的SAI-1表达水平在拔节和抽穗期较高,而在开花期后的各个时期均处于较低水平,这与甜高粱糖分积累呈负相关。本研究结果为进一步研究SAI-1基因调控甜高粱糖分含量的分子机制奠定了基础。 Soluble acid invertase (SAI) plays a key role in sucrose metabolism of sweet sorghum stem. In this paper, a novel full-length soluble acid invertase gene (SAI-1) cDNA sequence in sweet sorghum was cloned by RT-PCR. The full-length cDNA of SAI-1 gene is 2 345 bp long, which contained 210 bp 5'UTR and 110 bp 3'UTR and the coding region encode a protein with 674 amino acids, which contained a complete glycosyl hydrolase family 32 domains with the effect of hydrolysis of sucrose. The SAI-1 gene in sweet sorghum stem demonstrated a higher mRNA level at elongation and heading stage and a lower level after the flowering. This trend was quite the reverse as sugar accumulation in sweet sorghum stem. The results will provide a basis for further research on molecular mechanism of sucrose accumulation in sweet sorghum stem.
出处 《分子植物育种》 CAS CSCD 北大核心 2014年第2期262-269,共8页 Molecular Plant Breeding
基金 科技部“十一五”科技支撑计划项目(2009BADA7B01) 国家自然科学基金项目(31060036 31271790)共同资助
关键词 甜高粱 可溶性酸性转化酶 基因克隆 表达分析 Sweet sorghum, Soluble acid invertase, Gene cloning, Expression analysis
  • 相关文献

参考文献19

  • 1Antonopoulou G., Gavala H.N., Skiadas I.V., Angelopoulos K., and Lyberatos G., 2008, Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass, Bioresour. Technol., 99(1): 110-119.
  • 2Elliott K.J., Butler W.O., Dickinson C.D., Konno Y., Vedvick T. S., Fitzrnaurice L., and Mirkov T.E., 1993, Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fi'uit ripening, Plant Mol. Biol., 21(3): 515-524.
  • 3Gill R.W., and Sanseau P., 2000, Rapid in silico cloning of genes using expressed sequence tags (ESTs), Biotechnol. AnntL Rev., 5:25-44.
  • 4Gnansounou E., Dauriat A., and Wyman C.E., 2005, Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China, Bioresource Technology, 96(9): 985-1002.
  • 5Hoffmann-Thoma G., Hinkel K., Nicolay P., and Willenbrink J., 1996, Sucrose accumulation in sweet sorghum stem intern odes in relation to growth, Physiol. Plantarum, 97(2): 277-284.
  • 6金慧,刘荣厚,沈飞,梅晓岩.甜高粱茎汁固定化酵母乙醇发酵工艺优化的试验研究[J].农业工程学报,2008,24(4):194-198. 被引量:15
  • 7Lingle S.E., 1987, Sucrose metabolism in the primary culm of sweet sorghum during development, Crop Sci., 27(6): 1214-1219.
  • 8Liu Y., 2009, Cloning and genes for the key enzymes involved in sucrose accumulation and development of functional mark- ers in sweet sorghum, Dissertation for Ph.D., Chinese Aca- demy of Agricultural Sciences, Supervisor: Lu M., pp.39-52.
  • 9Liu Y., Dun B.Q., Zhao X.N., Yue M.Q., Lu M., and Li G.Y., 2013, Correlation analysis between the key enzymes activi- ties and sugar content in sweet sorghum (Sorghum bicolor L. Moench) stems at physiological maturity stage, Aust. J. CropSci., 7(1): 84-92.
  • 10Paterson A.H., Bowers J.E., Bruggrnann R., Dubchak I., Grim- wood J., Gundlach H., Haberer G., Hellsten U., Mitros T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X., Wicker T., Bharti A.K., Chapman J., Feltus F.A., Gowik U., Grigoriev I.V., Lyons E., Maher C.A., Martis M., Narechani- a A., Otillar R.P., Penning B.W., Salamov A.A., Wang Y., Zhang L., Carpita N.C., Freeling M., Gingle A.R., Hash C.T., Keller B., Klein P., Kresovich S., McCann M.C., Ming R., Peterson D.G., Mehboob-ur-Rahman., Ware D., Westhoff P., Mayer K.F., Messing J., and Rokhsar D.S., 2009, The Sorghum bicolor genome and the diversification of grasses, Nature, 457(7229): 551-556.

二级参考文献85

共引文献145

同被引文献48

  • 1杨彩菊,郝大海,杨素祥,王芳,李灿辉,陈善娜.高等植物中的蔗糖载体[J].植物生理学通讯,2006,42(4):767-776. 被引量:20
  • 2李宁,樊守金,张增艳.植物抗病相关启动子及其研究进展[J].植物遗传资源学报,2007,8(2):234-239. 被引量:3
  • 3冯美,孙慧芳.枸杞果实转色前后糖积累与相关酶活性的研究[J].宁夏农林科技,2007,48(4):9-10. 被引量:3
  • 4Gao S J, Wang Y, Li G Y. Sorghum breeding and production in China[ M ]//He Z H, Bonjean A P A. Cereals in China, Mexico: CIMMYT, 2010 : 97 - 108.
  • 5Stefaniak T R, Rooney W L. Chapter 6 Breeding sorghum as a bioenergy crop [ M ]// Bioenergy Feedstocks: Breeding and Ge- netics, Wiley-Blackwel1,2013:83-116.
  • 6Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development[ J]. Curr Opin Plant Bio1,2004,7 ( 3 ) :235-246.
  • 7Ruan Y L. Sucrose metaboIism: Gateway to diverse carbon use and sugar signaling[ J]. Ann Rev Plant Biol,2014,65:33-67.
  • 8Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning[ J ]. Trend Plant Sci ,1999,4(10) :401-407.
  • 9Barratt D H P, Derbyshirea P, Findlay K, et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase [ J]. PNAS,2009.106 ( 31 ) : 13124-13129.
  • 10Sergeeva L I, Keurentjes J J B, Bentsink L,et al. Vacuolar invert- ase regulates elongation of Arabidopsis thaliana roots as revealed by QT + L and mutant analysis [ J ]. Proc Natl Acad Sci USA, 2006,103 (8) :2994-2999.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部