期刊文献+

基于GPU的高清视频图像行人检测方法研究

HD Video Pedestrian Detection Research Based on the GPU Environment
原文传递
导出
摘要 对视频或图像中的行人进行检测使用HOG特征与支持向量机SVM相结合的方法,取得了良好的效果,但是由于HOG特征的计算量非常大,难以满足实时检测的需要,文章针对这一情况提出并实现一种在GPU环境下使用并行加速策略的高效行人检测方法。实验证明这种方法快速有效,大大地提高了行人检测的效率。 The pedestrian detection in video or images has got good effect by combining HOG feature with support vector machine, but due to the computational complexity of calculating HOG feature is too large to meet the needs of real-time detection. In this background, this paper proposes and implements an efficient pedestrian detection method using a parallel acceleration strategy based on GPU environment. Experimental results show that this method is fast and efficient, greatly improved the efficiency of pedestrian detection.
出处 《电子技术(上海)》 2014年第3期1-4,共4页 Electronic Technology
关键词 行人检测 HOG特征 SVM分类器 GPU运算 pedestrian detection HOG feature SVM classifier GPU computing
  • 相关文献

参考文献5

  • 1Hu Weiming, Tan Tieniu, Wang Liang, et al. A Surve on visual surveillance of object motion and behavior [J].IEEE Transactions on System, man and Cybernetics-Part C: Applications and Reviews 2004,34(3): 334-352.
  • 2Dalai N, Triggs B. Histogram of oriented gradient for human detection[C]//Internaltional Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
  • 3Pan Yanwei, Yuan Yuan, Li Xuelong, et al. Efficient HOG human detection[J]. Signal Processing, 2011,91(4): 773-781.
  • 4Chen P H, Lin C J, Sch?lkopfB. A tutorial on v - support vector machines[R]. Appl. Stoch. Models. Bus. Ind. 2005(21): 111-136.
  • 5Sanchez V D. Advanced support vector machines and kernel methods[J]. Neurocomputing 2003, 55(1-2): 5-20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部