期刊文献+

基于面积坐标和解析试函数的厚薄通用板单元 被引量:2

Two thick/thin plate elements based on the area coordinate and analytical trial functions
下载PDF
导出
摘要 求出了Mindlin-Reissner厚板理论控制方程的基本解析解,以其作为试探函数构造了两个基于第二类四边形面积坐标的广义协调厚薄通用板单元AATF-PQ4a和AATF-PQ4b;在此基础上计算了承受均布荷载方板的中心挠度和中心弯矩。结果表明:两种单元随网格加密而趋近于精确解,表现出较高的精度和较好的收敛性,而且AATF-PQ4b的收敛速度比AATF-PQ4a快;对于薄板极限情况,这两种厚薄通用板单元自动退化为薄板单元,完全无剪切闭锁现象发生;两种板单元均对网格畸变不敏感,具有较好的稳定性,适用于实际工程计算。 Two generalized conforming thick/thin plate elements called AATF-PQ4a and AATF-PQ4b are developed based on the quadrilateral area coordinate system. Based on the governing equations of Mindlin-Reissner plate theory, the fundamental analytical solutions are derived firstly, then the fundamental solutions are used as trial functions to formulate element AATF-PQ4a and AATF-PQ4b. For the case of thin plate, this thick/thin plate element can be degraded into corresponding thin plate element automatically and is free from shear locking. Through calculating central deflection and central moment of square plate under uniform loading, results from these two kinds of elements converge to the exact solution with mesh refinement, and the convergentspeed of AATF-PQ4b is faster than that of AATF-PQ4a. The elements possess higher accuracy, better convergence and stronger stability. Moreover, they are not sensitive to mesh distortion, which are suitable for engineering applications.
出处 《应用力学学报》 CAS CSCD 北大核心 2014年第2期257-260,313-314,共4页 Chinese Journal of Applied Mechanics
基金 中国地震局教师科研基金(20100106)
关键词 有限元 试探函数 厚薄通用板元 剪切闭锁 finite element,trial function,thick/thin plate element,shear locking.
  • 相关文献

参考文献7

  • 1Xiaoming, Can Song. Analytical trial function method for plane elements based on quadrilateral area coordinate theory[J]. Journal of Tsinghua University.. Science and Technology Edition, 2008, 48(2): 289-293 (in Chinese)).
  • 2陈晓明,岑松,龙驭球,傅向荣.含两个分量的四边形单元面积坐标理论[J].工程力学,2007,24(z1):32-35. 被引量:7
  • 3龙志飞,李聚轩,岑松,龙驭球.采用面积坐标的四边形板弯曲单元[J].工程力学,1997,14(4):1-10. 被引量:10
  • 4Long Yuqiu, Li Juxuan, Long Zhifei, et al. Area coordinates used in quadrilateral elements[J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 533-545.
  • 5Long Zhifei, Li Juxuan, Cen Song, et al. Some basic formulae for area coordinates used in quadrilateral elements[J]. Communications in Numerical Methods in Engineering, 1999, 15(12): 841-852.
  • 6龙志飞,岑松.有限元法新论[M].中国水利水电出版社,2001.
  • 7龙驭球,龙志飞,岑松.新型有限元法[M].北京:清华大学出版社,2004.

二级参考文献5

  • 1[1]Taig I C.Structural analysis by the matrix displacement method[R].Engl.Electric Aviation Report,1961:S017.
  • 2[2]Irons B M.Engineering application of numerical integration in stiffness method[J].J.AIAA,1966,14:2035~2037.
  • 3[3]Lee N S,Bathe K J.Effects of element distortion on the performance of isoparametric elements[J].International Journal for Numerical Methods in Engineering 1993,36:3553~3576.
  • 4[6]Chen X M,Cen S,Long Y Q,Yao Z H.Membrane elements insensitive to distortion using the quadrilateral area coordinate method[J].Computers & Structures,2004,82(1):35~54.
  • 5[10]Cardoso R P R,Yoon J W,Valente R A F.A new approach to reduce membrane and transverse shear locking for one-point quadrature shell elements:linear formulation[J].International Journal for Numerical Methods in Engineering,2006,66(2):214~249.

共引文献13

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部