摘要
The flow behavior of spray-formed FGH95 superalloy (similar to Rene 95) was investigated at tempera- tures ranging from 1050 to 1 140 ℃ and strain rate ranging from 0.01 to 10 s-1. At a given temperature and strain rate, flow stress increases quickly with increasing strain and then reaches a peak, then gradual decreases until high strain, and dynamic softening is observed. Utilizing the hyperbolic sine {unction and introducing the strain with non- linear fitting, the revised constitutive equations incorporating the effects of temperature, strain rate and strain for high temperature flow stress prediction of superalloy were established. The revised constitutive equations were im- planted into finite element software by second development to simulate the hot compression process successfully, and the effective stress and load stroke curves obtained by numerical simulation are good agreement with the experimen- tal results.
The flow behavior of spray-formed FGH95 superalloy (similar to Rene 95) was investigated at tempera- tures ranging from 1050 to 1 140 ℃ and strain rate ranging from 0.01 to 10 s-1. At a given temperature and strain rate, flow stress increases quickly with increasing strain and then reaches a peak, then gradual decreases until high strain, and dynamic softening is observed. Utilizing the hyperbolic sine {unction and introducing the strain with non- linear fitting, the revised constitutive equations incorporating the effects of temperature, strain rate and strain for high temperature flow stress prediction of superalloy were established. The revised constitutive equations were im- planted into finite element software by second development to simulate the hot compression process successfully, and the effective stress and load stroke curves obtained by numerical simulation are good agreement with the experimen- tal results.
基金
Item Sponsored by National Natural Science Foundation of China(50974016)