期刊文献+

一种改进的混沌局部搜索的人工蜂群算法 被引量:2

Artificial Bee Colony Algorithm Based on Improvement of Chaotic Local Search
下载PDF
导出
摘要 人工蜂群算法具有鲁棒性强、收敛速度快且全局寻优性能优异等优点,但其局部搜索能力不足.为了克服此缺陷,提出了一种改进的混沌局部搜索的人工蜂群算法.新算法在每一代的所有个体的平均值附近利用混沌函数进行局部搜索,然后在搜索到的解和原食物源之间采用贪婪选择的原则确定下一代种群.基于6个标准测试函数的仿真结果表明,本算法能有效地加快收敛速度,提高最优解的精度,其性能优于已有的人工蜂群算法. The artificial bee colony performance its ability of in global opti local search, mlzatlon algorithm has good robust, high convergence speed and outstanding but its ability of local search is not good enough. In order to improve an improved chaotic algorithm, local search is executed nearby the tween the solution searched by chaos that the improved algorithm not only whose performance is better than that artificial bee colony algorithm was proposed. In the new mean of all individuals, selecting the better individual be function and previous population. Experimental simulation shows accelerates the convergence rate, but also improves its accuracy, of the existing artificial bee colony algorithm.
出处 《广东工业大学学报》 CAS 2013年第4期55-60,共6页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(60974077)
关键词 人工蜂群算法 混沌函数 局部搜索 artificial bee colony chaos functions local search
  • 相关文献

参考文献15

  • 1Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony ( ABC) algorithm [J]. Journal of Global Optimization, 2007,39(3) :459-471.
  • 2Karaboga D, Basturk B. On the performance of artificial bee colony ( ABC) algorithm [J] . Applied Soft Computing, 2008,8(1) :687-697.
  • 3张超群,郑建国,王翔.蜂群算法研究综述[J].计算机应用研究,2011,28(9):3201-3205. 被引量:60
  • 4Karaboga D, Akay B. A survey: Algorithms simulating bee swarm intelligence [J]. Artificial Intelligence Review, 2009,31(1-4) :61-85.
  • 5Karaboga D. An idea based on honey bee swarm for numerical optimization, Technical Report- TR06 [RJ. Kayseri , Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 6Gao W, Liu S. Improved artificial bee colony algorithm for global optimization [J]. r nformation Processing Letters, 2011,111 (17) :871-882.
  • 7Banharnsakun A, Achalakul T, Sirinaovakul B. The bestso-far selection in artificial bee colony algorithm [J]. Applied Soft Computing, 2011,11 (2) :2888-2901.
  • 8胡珂,李迅波,王振林.改进的人工蜂群算法性能[J].计算机应用,2011,31(4):1107-1110. 被引量:45
  • 9罗钧,李研.具有混沌搜索策略的蜂群优化算法[J].控制与决策,2010,25(12):1913-1916. 被引量:78
  • 10樊小毛,马良.0-1背包问题的蜂群优化算法[J].数学的实践与认识,2010,40(6):155-160. 被引量:23

二级参考文献67

共引文献298

同被引文献30

  • 1LEONOV G A, KUZNETSOV N V, VAGAITSEV V I. Hidden attractor in smooth Chua system[J]. Physica D, 2012, 241(18) : 1482-1486.
  • 2JAFARI S, SPROTT J C. Simple chaotic flows with a line equilibrium[J]. Chaos Solit Fract, 2013, 57: 79-84.
  • 3JAFARI S, SPROTT J C, Golpayegani S. Elementary quadratic chaotic flows with no equilibria [J]. Phys Lett A, 2013, 377(9): 699-702.
  • 4MAROTTO F R. Snap-back repellers imply chaos in R [J]. J Math Anal Appl, 1978, 63: 199-223.
  • 5SILVA C P. Inikovnikov theorem-a tutorial[J]. IEEE Trans Circuit Syst-I, 1993,40 (10) : 675-682.
  • 6CELIKOVSKY, Vanek. Control Systems : From Linear Analysis to Synthesis of Chaos [ M ]. London: Prentice Hall, 1996.
  • 7YANG Q G. A chaotic system with one saddle and two sta- ble node-foci[J]. Int J Bifur Chaos, 2008, 18(5) : 1393- 1414.
  • 8LU H, CHEN G R. Generating multiscroll chaotic attract- ors: theories, methods and applications [ J ]. Int J Bifur Chaos, 2006,16(4) : 775-858.
  • 9ZHOU T S, CHEN G R. Classification of chaos in 3-D autonomous quadratic systems-I, basic framework and methods[J]. Int J Bifur Chaos, 2006, 16(9): 2459- 2479.
  • 10ZHENG Z H, CHEN G R. Existence of heteroclinic orbits of the Inikov type in a 3D quadratic autonomous chaotic system[J]. J Math Anal Appl, 2006, 315(1) : 106-119.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部