期刊文献+

电极间距对μc-Si_(1-x)Ge_x:H薄膜结构特性的影响 被引量:2

Influences of electrode separation on structural properties of μc-Si_(1-x)Ge_x:H thin films
原文传递
导出
摘要 采用射频等离子体增强化学气相沉积(RF-PECVD)技术,使用SiH4加GeH4的反应气源组合生长微晶硅锗(μc-Si1-x Gex:H)薄膜.研究了电极间距对μc-Si1-x Gex:H薄膜结构特性的影响.发现薄膜中的Ge含量随电极间距的降低逐渐增加.当电极间距降至7 mm时,μc-Si1-x Gex:H薄膜具有较大的晶粒尺寸并呈现较强的(220)择优取向,同时具有较低的微结构因子.通过薄膜结构特性的变化分析了反应气源的分解状态,认为Ge含量的提高主要是SiH4的分解率降低所导致的.在较窄的电极间距(7 mm)下,等离子体中GeH3基团的比例较大,增强了Ge前驱物的扩散能力,使μc-Si1-x Gex:H薄膜的质量得到提高. Hydrogenated microcrystalline silicon germanium (μc-Sil-xGex:H) thin films have been prepared by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) using a mixture of Sill4 and GeH4 as the reactive gases. Effects of electrode seParation on the structural properties of μc-Sil-xGex:H thin films have been investigated. Results show that reduction of the electrode separation can increase the Ge content in the films. Moreover, μc-Sil-xGex:H thin film deposited at a lower electrode separation of 7 mm possesses not only a stronger (220) orientation and a larger grain size, but also a lower microstructural factor. Then, the decomposition characteristics of the reactive gases are analyzed according to the variation of the structural properties of the μc-Sil-xGex:H thin films. It is found that the increase of the Ge content is due to the decrease of the Sill4 decomposition rate in the plasma. While the better film quality obtained at the lower electrode separation is attributed to the enhancement of the diffusibility of the Ge precursors caused by improving the proportion of GeH3 radicals
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期277-282,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2011CBA00705,2011CBA00706,2011CBA00707) 国家自然科学基金(批准号:61377031) 天津市应用基础及前沿技术研究计划(批准号:12JCQNJC01000) 东北电力大学博士科研启动基金(批准号:BSJXM-201304)资助的课题~~
关键词 微晶硅锗 电极间距 滞留时间 射频等离子体增强化学气相沉积 microcrystalline silicon germanium, electrode separation, residence time, radio frequencyplasma enhanced chemical vapor deposition
  • 相关文献

参考文献24

  • 1Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692.
  • 2Kim S, ChungJ W, Lee H, ParkJ, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26.
  • 3Yan BJ, Yue G Z, Sivec L, YangJ, Guha S,Jiang C S 2011 Appl. Phys. Lett. 99 113512.
  • 4Huang Z H, ZhangJ J, NiJ, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803.
  • 5Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M, Matsuda A 1996 Appl. Phys. Lett. 69 4224.
  • 6Cao Y, ZhangJ J, Li C, Li T W, Huang Z H, NiJ, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161.
  • 7Cao Y, ZhangJ J, Li T W, Huang Z H, MaJ, Yang X, NiJ, Geng X H, Zhao Y 2013Journal of Semiconductors 34034008.
  • 8敦亚琳,张建军,张丽平,张鑫,曹宇,郝秋艳,耿新华,赵颖2011光电子激光22382.
  • 9曹宇,张建军,李天微,黄振华,马峻,倪牮,耿新华,赵颖.微晶硅锗太阳电池本征层纵向结构的优化[J].物理学报,2013,62(3):223-229. 被引量:8
  • 10谷士斌,胡增鑫,张建军,孙建,杨瑞霞2007光电子激光18539.

二级参考文献27

共引文献13

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部