期刊文献+

一种加权的支持向量机及其在储层识别中的应用 被引量:1

A Weighted Support Vector Machine and Its Application in Reservoir Recognition
原文传递
导出
摘要 标准支持向量机(SVM)抗噪声能力不强,当训练样本中存在有噪声或者野点时,会影响最优分类面的产生,最终导致分类结果出现偏差。针对这一问题,提出了一种考虑最小包围球的加权支持向量机(WSVM),给每个样本点赋予不同的权值,以此来降低噪声或野点对分类结果的影响。对江汉油田某区块的oilsk81,oilsk83和oilsk85三口油井的测井数据进行交叉验证,其中核函数采用了线性、指数和RBF这3种不同的核函数。测试结果显示,无论是在SVM还是在WSVM中,核函数选择RBF识别率都是最高的,同时提出的WSVM不受核函数的影响,识别稳定性好,且在交叉验证中识别率都能够达到100%。 Support vector machine(SVM) is sensitive to noises and it will influence the output of optimal classification face when the training sample contain noise or outliers,ultimately lead to the deviation of the classification results.In order to deal with these problem,this paper proposes a weighted support vector machine(WSVM) for considering the minimum surrounded ball.The WSVM reduces the effects of noise or outliers on classification by assigning different weights to each sample.This paper executes three different tests with linear,exponential and RBF kernel function.Cross validation simulation on log data of three wells(oilsk81, oilsk83 and oilsk85 in Jianghan Oilfield) shows that,either in SVM or in WSVM, the recognition rate will be the highest when selecting the RBF kernel function. Meanwhile, the WSVM in this paper works stably and will not be affected by the kernel function, in addition, its recognition rate can reach 100% in all cross validation.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第7期39-46,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(71103163 71103164 71301153) 教育部新世纪优秀人才支持计划(NCET-131012) 教育部人文社会科学研究青年基金(10YJC790071) 中央高校基本科研业务费专项资金(CUG120111 CUG110411 G2012002A CUG140604) 构造与油气资源教育部重点实验室开放课题(TPR-2011-11)
关键词 支持向量机 加权支持向量机 储层识别 测井数据 support vector machine weighted support vector machine reservoir recognitionlog data
  • 相关文献

参考文献11

二级参考文献52

  • 1诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 3孔波,刘小茂,张钧.基于中心距离比值的增量支持向量机[J].计算机应用,2006,26(6):1434-1436. 被引量:16
  • 4苏顺华,诸克军,黎金玲.软分类中最佳调和适应度函数的构建[J].系统工程理论方法应用,2006,15(3):241-246. 被引量:4
  • 5裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,2002.
  • 6[1]Vapnik V. The nature of statistical learning theory[M]. New York : Springer-Verlag, 1995.
  • 7[2]Joachims T. Text categorization with support vector machines[R]. Technical Report, LS Ⅷ Number 23, University of Dortmund, German, 1997.
  • 8[3]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: IEEE Conference on Computer Vision and Pattern Recognition [C],Puerto Rico, 1997: 130~136.
  • 9[4]Schmidt M. Identifying speaker with support vector networks[A]. In: Interface'96 Proceedings [C], Sydney, Australia,1996.
  • 10[5]Cai Yu-Dong, Liu Xiao-Jun, Xu Xue-biao et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002,26 (3): 293 ~ 296.

共引文献114

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部