期刊文献+

有限域上一类等维码的下界

The Lower Bound of Constant Dimension Codes in Finite Fields
原文传递
导出
摘要 等维码凭借其在随机线性网络编码中的良好的差错控制得到广泛研究,对于给定维数和最小距离的等维码所含码字的最大个数目前还没有一般性结果.Tuvi Etzion和Alexander Vardy给出了一定等维码所含码字最大个数的上界和下界,首先利用对偶空间构造等维码C(n,M,2k,k),达到了此类码所含码字的下界,然后具体构造了最优等维码C(7,41,4,2). Constant-dimension codes become interesting because of their significance to error control in noncoherent random linear network coding. However, the maximal cardinality of any constant dimension code with finite dimension and minimum distance remains unknown. Tuvi Etzion and Alexander Vardy presented the lower bound and the upper bound for a constant dimension code. In this paper, using dual space we first construct a constant dimension code C(n, M, 2k, k) that reaches the lower bound, and then construct an optimal constant dimension code C(7,41,4,2).
作者 张晓寒 赵梦
出处 《数学的实践与认识》 CSCD 北大核心 2014年第7期100-105,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11271004)
关键词 等维码 下界 对偶空间 constant dimension codes lower bound dual space
  • 相关文献

参考文献10

  • 1Kotter R, Kschischang F R. Coding for errors and erasures in random network coding[C]//Proc IEEE Int Syrup Information Theory, Nice, France, 2007, 6: 791-795.
  • 2Kotter R, Kschischang F R. Coding for errors and erasures in random network coding[J]. IEEE Transactions On Information Theory, 2008, 54(8): 3579-3591.
  • 3Gabidulin E, Bossert M. Codes for network coding[C]//Proc IEEE Int Symp Information Theory, Toronto, ON, Canada, 2008, 7: 867-870.
  • 4Gadouleau M, Yan Z. Constant-rank codes[C]//Proc IEEE Int. Symp. Information Theory, Toronto, ON, Canada, 2008, 7: 876-880.
  • 5Gadouleau M, Yan Z. Constant-rank codes and their connection to constant-dimension codes[J]. IEEE Transactions On Information Theory, 2011, 56(7): 3207-3216.
  • 6Gadouleau M, Yan Z. Packing and covering properties of subspace codes for error control in random linear network coding[J]. IEEE Transactions On Information Theory, 2010, 56(5): 2097-2108.
  • 7Kohnert A, Kurz S. Construction of large constant-dimension codes with a prescribed minimum distance[J]. Lecture Notes in Computer Science, 2008, 5393(12): 31-42.
  • 8Braun M, Kohnert A, Wassermann A. Optimal linear codes from matrix groups[J]. IEEE Trans- actions on Information Theory, 2005, 12: 4247-4251.
  • 9Xia S T, Fu F W. Johnson type bounds on constant dimension codes[J]. Des Codes Cryptogr, 2009, 50: 163-172.
  • 10Etzionand T, Vardy A. Error-Correcting Codes in Projective Space[J]. IEEE Transactions On Information Theory, 2011, 57(2): 1165-1174.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部