摘要
利用算子理论及矩阵运算方法,讨论了由两类不同的对称微分算式D^((4))+D^((2))+q_1(t)和D^((4))+q_2(t)(D=d/dt,t∈I=[a,b])生成的微分算子的积算子的自伴性,获得了积算子是自伴算子的充分必要条件.
The self-adjointness of product operator LIL2 is investigated which operators Li(i = 1, 2) are generated by two different differential expressions D(4)+D(2) +q1(t) and D(4) + q2(t)(D = d,t ∈ I = [a,b]) respectively. The sufficient and necessary conditions of product operator L1L2 which is self-adjoint are obtained with operators theory and matrix calculation method.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第7期230-233,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11361039)
教育部科学技术研究重点项目(211034)
内蒙古自治区自然科学基金项目(2013MS0116)
内蒙古自治区高等学校科学研究项目(N10045)
关键词
微分算子
积算子
自伴性
differential operators
product operators
self-adjointness