期刊文献+

一类三阶脉冲微分包含解的存在性 被引量:1

Existence Results for a Class of Third Order Impulsive Functional Differential Inclusions
原文传递
导出
摘要 研究了一类三阶脉冲泛函微分包含解的存在性,应用不动点定理和多值分析理论获得了两个新结果,举例说明了所得的结果. In this paper, we study the existence of solutions for a class of third order impulsive functional differential inclusions. Two new results are obtained by using the fixed point theorem and the multi-valued analysis theory. An example is given to illustrate our main results.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第7期266-274,共9页 Mathematics in Practice and Theory
基金 湖南省科技厅科技计划项目(2013FJ3096) 湖南省自然科学基金(13JJ3106) 湖南省教育厅科研项目(12C0101) 湖南省教育厅教改项目(湘教通[2013]223号-287)
关键词 存在性 脉冲微分包含 三阶 不动点 多值分析理论 existence impulsive functional differential inclusion third order fixed pointmulti-valued analysis theory
  • 相关文献

参考文献21

  • 1Benchohra M, Ouahab A. Initial and boundary value problems for second order impulsive func- tional differential inclusions, electron[J]. J Qual Theory Differ Equ, 2003(3): 1-10.
  • 2Chang Yong-Kui, Li Wan-Tong. Existence results for second order impulsive differential inclu- sions[J]. J Math Anal Appl, 2005, 301: 477-490.
  • 3Lin Aihong, Hu Lanying. Existence results for impulsive neutral stochastic functional integro- differential inclusions with nonlocal initial conditions[J]. Computers and Mathematics with Appli- cations, 2010, 59: 64-73.
  • 4Hendersona Johnny, Ouahabb Abdelghani. Impulsive differential inclusions with fractional or- der[J]. Computers and Mathematics with Applications, 2010, 59: 1191-1226.
  • 5Li Wen-Sheng, Chang Yong-Kui, Nieto Juan J. Solvability of impulsive neutral evolution differential inclusions with state-dependent delay[J]. Mathematical and Computer Modelling, 2009, 49: 1920- 1927.
  • 6Abada Nadjet, Benchohra Mouffak, Hammouche Hadda. Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions[J]. J. Differential Equa- tions, 2009, 246: 3834-3863.
  • 7Cardinalia Tiziana, Rubbionia Paola. Impulsive semilinear differential inclusions: Topological structure of the solution set and solutions on non-compact domains[J]. Nonlinear Analysis, 2008, 69: 73-84.
  • 8Yu Xiulan, Xiang Xiaoling, Wei Wei. Solution bundle for a class of impulsive differential inclusions on Banach spaces[J]. J Math Anal Appl, 2007(327): 220-232.
  • 9Kryszewski Wojciech, Plaskacz Slawomir. Periodic solutions to impulsive differential inclusions with constraints[J]. Nonlinear Analysis, 2006, 65: 1794-1804.
  • 10Balasubramaniam P, Vinayagam D. Existence of solutions of nonlinear stochastic integrodifferential inclusions in a Hilbert Space[J]. Computers and Mathematics with Applications, 2005, 50: 809-821.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部