期刊文献+

平面常宽凸集的Firey-Sallee定理 被引量:2

On the Firey-Sallee theorem of planar set of constant width
原文传递
导出
摘要 常宽凸集是一类广泛应用在机械设计、医学等领域的特殊几何图形.本文探讨平面中的常宽凸集,简化证明著名的Firey-Sallee定理,即宽度相等的正Reuleaux多边形中Reuleaux三角形的面积最小. The convex sets of constant width are special geometric ngures, wmcn are winery u^eu ,,1 u,o~, design, medicine and so on. In this note, we investigate convex sets of constant width in the Euclidean plane, and we give an elementary proof of the known Firey-Sallee Theorem, that is, the area of Reuleaux triangle is minimum among all sets of constant width.
出处 《中国科学:数学》 CSCD 北大核心 2014年第4期391-397,共7页 Scientia Sinica:Mathematica
基金 贵州省科学技术基金(批准号:黔科合J字LKZS[2012]11) 高等学校博士学科点专项科研(博导类)基金(批准号:20120182110020) 博士后科研基金(批准号:102060-20730834) 中央高校基本科研业务费专项资金(批准号:XDJK2013D022)资助项目
关键词 常宽凸集 Firey—Sallee定理 Blaschke—Lebesgue定理 Reuleaux三角形 Reuleaux多边形 convex set of constant width, Firey-Sallee theorem, Blaschke-Lebesgue theorem, Reuleauxtriangle, Reuleaux polygon
  • 相关文献

参考文献31

  • 1Blaschke W. Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math Ann, 1915, 76:504-513.
  • 2Lebesgue H. Sur le problme des isoprimtres et sur les domaines de largeur constante. Bull Soc Math, 1914, 7:72-76.
  • 3Lebesgue H. Sur quelques questions des minimums, relatives aux courbes orbiformes, et sur les rapports avec le calcul de variations. J Math Pures Appl (9), 1921, 4:67-96.
  • 4Bonnesen T, Fenchel W. Theorie der Konvexen KSrper. Berlin: Springer, 1934.
  • 5Campi S, Colesanti A, Gronchi P. Minimum problems for volumes of constant bodies. In: Marcellini P, Talenti C, Visintin E, eds. Partial Differential Equations Applications. New York: Marcel-Dekker, 1996, 43-55.
  • 6Chakerian G, Groemer H. Convex bodies of constant width. In: Gruber P, Wills J, eds. Convexity and its Applications, Basel: Birkhaiiser. 1983:49-96.
  • 7Ghandehari M. An optimal control formulation of the Blaschke's-Lebesgue theorem. J Math Anal Appl, 1996, 200 322 331.
  • 8Harrell E. A direct proof of a theorem of Blaschke and Lebesgue. J Geom Anal, 2002, 12:81 88.
  • 9Yagiom I, Boltyansky V. Convex Figures. New York: Holt, Rinehart and Winston, 1961.
  • 10Fujiwara M. Analytical proof of Blaschke's theorem on the curve of constant breadth with minimum area I and II Proc Imp Acad Japan, 1927, 3: 30309; 1931, 7:300-302.

二级参考文献33

  • 1[1]Barbier E.. Note surle probleme del'aiguille et el.. Jet du joint courvert[J]. J Math Pur Appl, 1886, 5: 273~286.
  • 2[2]Blaschke W. Konvexe gegebener konstanter Breite und kleinsten Inhalts[J]. Math Ann, 1915, 76: 504~513.
  • 3[3]Blaschke W, Kreis und Kugel. Chelsea reprint[M]. New York: 1949(有中译本)
  • 4[4]Fujiwara M, Kakeya S. On some problems of maxima and minima for the curve of constant breadth and the in-resolvable curve of the equilateral triangle[J]. Tohoku Math J, 1917, 11: 92~110.
  • 5[5]Hammer P C. Constant breath curves in the plane[J]. Proc Amer Math Soc, 1955, 6: 333~334.
  • 6[6]Hsiung C C. A First Course in Differential Geometry[M]. New York: John Wiley & Sons, Inc 1981(有中译本).
  • 7[7]Lay S R. Convex Sets and Their Application[M]. Ney York: John Wiley & Sons, 1982.
  • 8[8]Rosenthal A, Szasz O. Eine Extremaleigenschaft der Kurven konstanter Breite[J]. Jahrb Dtsch Math Verein, 1916, 25: 278~282.
  • 9[9]Tanno S. C∞-approximation of continuous ovals of constant width[J]. J Math Soc Japan, 1976, 28: 384~395
  • 10[10]Wegner B. Analytic approximation of continuous ovals of constant width[J]. J math Soc Japan, 1977, 29: 537~540.

共引文献8

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部