期刊文献+

基于扩散矩阵的半监督回归学习 被引量:2

Semi-supervised learning for regression based on the diffusion matrix
原文传递
导出
摘要 半监督学习算法用到标记和未标记的样本.大量的实验表明,利用无标记样本可以改进学习算法的逼近性能.然而,当样本数增加时,逼近性能的定量分析几乎没有.本文构造基于扩散矩阵的一种半监督学习算法,建立逼近阶.结果还量化地说明,未标记样本的使用可以减少逼近误差. Semi-supervised learning algorithms make use of labeled and unlabeled samples. A large number of experiments show that the use of unlabeled samples may improve approximation power. However, there is seldom quantitative analysis of approximation power when the number of unlabeled samples increases. In this paper a semi-supervised learning algorithm is constructed based on diffusion matrices. We establish the approximation order. Our results also illustrate quantitatively that the use of unlabeled samples may reduce the approximation error.
出处 《中国科学:数学》 CSCD 北大核心 2014年第4期399-408,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171014和91130009) 国家重点基础研究发展计划(973计划)(批准号:2010CB731900)资助项目
关键词 半监督学习 回归函数 扩散矩阵 semi-supervised learning, regression function, diffusion matrix
  • 相关文献

参考文献2

二级参考文献53

  • 1Aronszajn N. Theory of reproducing kernels. Trans Amer Math Soc, 1950, 68:337-404.
  • 2Belkin M, Niyogi P. Semi-supervised learning on riemannian manifolds. Machine Learning, 2004, 56:209-239.
  • 3Belkin M, Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods. J Comput System Sci, 2008, 74:1289-1308.
  • 4Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res, 2006, 7:2399-2434.
  • 5Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the 18th International Conference on Machine Learning. Waltham: Morgan Kaufmann Publishers Inc., 2001, 19-26.
  • 6Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the llth Annual Conference on Computational Learning Theory. New York: ACM, 1998, 92-100.
  • 7Cao Y, Chen D-R. Consistency of regularized spectral clustering. Appl Comput Harmon Anal, 2010, 30:319-336.
  • 8Cucker F, Smale S. On the mathematical foundations of learning. Bull Amer Math Soc, 2002, 39:1-50.
  • 9Cucker F, Zhou D-X. Learning Theory: An Approximation Theory Viewpoint. Cambridge: Cambridge University Press, 2007.
  • 10Johnson R, Zhang T. On the effectiveness of Laplacian normalization for graph semi-supervised learning. J Mach Learn Res, 2007, 8:1489-1517.

共引文献1

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部