期刊文献+

总体最小二乘线性回归统一模型及解算 被引量:4

The unified model and algorithm of total least squares linear regression
下载PDF
导出
摘要 对总体最小二乘线性回归问题进行了进一步的分析探讨,针对文献中提出的同时考虑因变量和自变量误差的条件平差模型和间接平差模型,通过理论分析和推导,当把因变量与自变量看成是等精度时其平差结果并未达到预定目的,而是与只考虑因变量误差的平差结果一致。同时,文献中所述平差模型都只限于一元线性回归,而未讨论多元线性回归的总体最小二乘问题。鉴于此,本文基于间接平差方法提出了一种总体最小二乘线性回归的统一模型,并推导了其具体解算方法,该模型同时考虑了因变量和自变量的误差且同样适用于多元线性回归。通过实例分析,说明了本文所述方法的正确性和合理性。 This paper further analyzes the problem of total least squares linear regression, especially the condition adjustment model and indirect adjustment model for simultaneous consideration of dependent variable error and independent variable error. Theoretical analysis dependent variables and independent variables are of equal precision, and deduction showed, ,when the the adjustment result didn t achieve the intended purpose. However, the result is consistent with the adjustment results in the case of only considering the dependent variable error. At the same time, the adjustment models described in the literature are limited to the simple linear regression, and failed to discuss the total least squares problem in multivariate linear regression. In view of this, based on indirect adjustment method, this paper proposes a general unified least squares linear regression model and detail algorithm. The model considers the error of the dependent variables and independent variables, and meanwhile it can also be applied to the nultivariate linear regression.. The analysis of examples proved the correctness and rationality of the method lescribed in this paper.
出处 《工程勘察》 2014年第4期87-90,共4页 Geotechnical Investigation & Surveying
关键词 总体最小二乘 线性回归 平差模型 total least squares linear regression adjustment model
  • 相关文献

参考文献7

二级参考文献28

  • 1李雄军.对X和Y方向最小二乘线性回归的讨论[J].计量技术,2005(1):50-52. 被引量:20
  • 2陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:170
  • 3王安怡,陶本藻.顾及自变量误差的回归分析理论和方法[J].勘察科学技术,2005(3):29-32. 被引量:11
  • 4俞锦成.关于整体最小二乘问题的可解性[J].南京师大学报(自然科学版),1996,19(1):13-16. 被引量:10
  • 5Golub G H, Lan Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980,17(6 ) : 883-893.
  • 6Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations [J].Three Algorithms J Geod, 2008,82:373-383.
  • 7Schaffrin B, Felus A Y. Multivariate Total Least- squares Adjustment for Empirical Affine Transformations[C]. The 6th Hotine Marussi Symposium for Theoretical and Computational Geodesy, Springer, Berlin, 2007.
  • 8Schaffrin B, Lee I P, Felus Y A, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Boll Geod Sci Affini, 2006, 65(3): 141-168.
  • 9Schaffrin B. A Note on Constrained Total Leastsquares Estimation[J]. Linear Algebra Appl, 2006, 417(1) :245-258.
  • 10Eckart C, Young G. The Approximation of One Matrix by Another of Lower Rank [J]. Psychometrika ,1936,1(3) :211-218.

共引文献170

同被引文献24

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部