摘要
We report our observations on the higher carrier mobility and higher conductivity of sulfur-doped n-type diamond thin films synthesized by the hot filament chemical vapor deposi- tion (HFCVD). The structural and electrical characterizations of the films are measured by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), energy dispersion X-ray spectra (EDX), and Hall effect measurements. It is found that the sulfur atoms are in- corporated into the polycrystalline diamond films. The n-type conductivity of the films increases with the H2S concentration, and a conductivity of the films as high as 1.82 ^-l.cm-1 is achieved. The results show that the sulfur atom plays an important role in the structural and electrical properties of sulfur-doped diamond thin films.
We report our observations on the higher carrier mobility and higher conductivity of sulfur-doped n-type diamond thin films synthesized by the hot filament chemical vapor deposi- tion (HFCVD). The structural and electrical characterizations of the films are measured by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), energy dispersion X-ray spectra (EDX), and Hall effect measurements. It is found that the sulfur atoms are in- corporated into the polycrystalline diamond films. The n-type conductivity of the films increases with the H2S concentration, and a conductivity of the films as high as 1.82 ^-l.cm-1 is achieved. The results show that the sulfur atom plays an important role in the structural and electrical properties of sulfur-doped diamond thin films.
基金
supported by the Fundamental Research Funds for Central Universities of China(No.10ML40)