期刊文献+

认知无线电中的稀疏信道估计与导频优化 被引量:15

Sparse Channel Estimation and Pilot Optimization for Cognitive Radio
下载PDF
导出
摘要 认知无线电技术能充分利用闲置的频谱进行数据传输,从而提高频谱利用率。而稀疏信道估计能充分发掘无线信道的稀疏性,从而节省导频开销,并进一步提高频谱利用率。因此,该文研究了采用稀疏信道估计的认知无线电系统及导频优化,将信道估计转化为稀疏重建问题,以最小化观测矩阵的互相关为目标进行优化,并提出了一种快速的导频优化算法。该算法通过灵活设置外循环和内循环次数,实现了对导频序列进行逐位置的替换与优化。仿真结果表明,相比于最小二乘信道估计,稀疏信道估计能节省72.4%的导频开销,提高8.2%的频谱利用率;此外,该导频优化算法优于目前的随机优化算法,在相同的0.012误码率性能下,相比后者能节省约5 dB的信噪比。 Cognitive radio can make full use of idle spectrum for data transfer, and therefore improve the spectrum utilization. Sparse channel estimation explores the sparse property of wireless channels, which reduces the pilot overhead and further improves the spectrum efficiency. This paper investigates the sparse channel estimation in cognitive radio systems as well as the pilot optimization therein, and the channel estimation is formulated as a sparse recovery issue. With the objective to minimize the cross correlation of the measurement matrix, a fast pilot optimization algorithm is then proposed. By flexibly setting the number of outer loop and inner loop, each entry of pilot pattern can be sequentially updated and optimized. Simulation results show that compared to the Least Squares (LS) channel estimation, sparse channel estimation can reduce 72.4%of the pilot overhead and improve the spectrum efficiency by 8.2%. Moreover, the proposed pilot optimization algorithm outperforms the current random search algorithm by saving 5 dB of Signal to Noise Ratio (SNR) at the same 0.012 of Bit Error Rate (BER).
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第4期763-768,共6页 Journal of Electronics & Information Technology
基金 国家科技支撑计划(2012BAH15B02) 国家科技重大专项(2012ZX03001036-004) 国家自然科学基金(61302097) 教育部博士点基金(20120092120014) 华为创新研究计划资助课题
关键词 认知无线电 稀疏信道估计 压缩感知 导频设计 Cognitive radio Sparse channel estimation Compressed sensing Pilot design
  • 相关文献

参考文献15

  • 1Tandur D, Duplicy J, Arshad K, et al.. Cognitive radio systems evaluation: measurement, modeling, and emulation approach[J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 77-84.
  • 2Zhou X, Li G, and Sun G. Multiuser spectral precoding for OFDM-based cognitive radio systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(3): 345-352.
  • 3Bajwa W, Haupt J, Sayeed A, et al.. Compressed channelsensing: a new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058 -1076.
  • 4Berger C, Wang Z, Huang J, et al.. Application of compressive sensing to sparse channel estimation [J]. IEEE Communications Magazine, 2010, 48(11): 164-174.
  • 5Qi C and Wu L. Application of compressed sensing to DRM channel estimation[C]. IEEE 73rd Vehicular Technology Conference (VTC-Spring 2011), Budapest, Hungary, 2011: 1-5.
  • 6Meng J, Yin W, Li Y, et al.. Compressive sensing basedhigh-resolution channel estimation for OFDM system [J]. IEEE Journal on Selected Topics in Signal Processing, 2012, 6(1): 15-25.
  • 7Hu D, He L, and Wang X. An efficient pilot design method for OFDM-based cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(4): 1252 -1259.
  • 8Manasseh E, Ohno S, and Nakamoto M. Pilot design for noncontiguous spectrum usage in OFDM-based cognitive radio networks[C]. European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 2012: 465-469.
  • 9何雪云,宋荣方,周克琴.认知无线电NC-OFDM系统中基于压缩感知的信道估计新方法[J].通信学报,2011,32(11):85-94. 被引量:18
  • 10Tong L, Sadler B, and Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing[J]. IEEE Signal Processing Magzaine, 2004, 21(6): 12-25.

二级参考文献14

  • 1VAN DE BEEK J J, EDFORS O. On channel estimation in OFDM, systems[A]. Proc of IEEE VTC 1995.Piscataway: IEEE[C]. 1995, 2: 815-819.
  • 2DONOHO D L, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Trans on Information Theory, 2006 52(1): 6-18.
  • 3BUDIARJO I, RASHAD I, NIKOOKAR H. Efficient pilot pattern for OFDM-based cognitive radio channel estimation-part 1 [A]. 14th IEEE Symposium on Communications and Vehicular Technology in the Benelux[C]. 2007.1-5.
  • 4LIU J N, FENG S L, WANG H G. Comb-type pilot aided channel estimation in non-contiguous OFDM systems for cognitive radio[A]. Proceedings of the 5th International Conference on Wireless commu- nications, networking and mobile computing[C]. Beijing, china, 2009.1463-1466.
  • 5DONOHO D L. Compressed sensing[J].IEEE Trans on Info Theory, 2006,52(4): 1289-1306.
  • 6BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-120,124.
  • 7PAREDES J L, ARCE G R, WANG Z M. Ultra-wideband compressed sensing: channel estimation[J]. IEEE Journal of Selected Topics in Signal processing, 2007,1(3):383-395.
  • 8TAUBOCK (2 HLAWATSCH F, EIWEN D, et al. Compressive esti- marion of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing[J] .IEEE Journal of se- lected topics in signal processing, 2010, 4(2): 255-271.
  • 9CANDES E, TAO T. Near optimal signal recovery from random pro- jections: universal encoding strategies?[J]. IEEE Trans on Information Theory, 2006, 52(12):5406-5425.
  • 10CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measuremens[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.

共引文献17

同被引文献94

  • 1王德胜,朱光喜,林宏志.MIMO-OFDM最优导频设置与优化的信道估计方法[J].通信学报,2005,26(1):34-39. 被引量:15
  • 2胡兰雨,高振明,朱维红,张灿,孙巧云.基于PN码导频的FMT信道估计方法[J].山东大学学报(理学版),2006,41(1):120-124. 被引量:6
  • 3付炜,许山川.一种改进的小波域去噪算法[J].计算机工程与应用,2006,42(11):80-81. 被引量:12
  • 4姜永权,马逸新.一种基于PN序列的OFDM时域信道估计方法[J].汕头大学学报(自然科学版),2006,21(4):75-80. 被引量:7
  • 5Barhumi I, Leus G, Moonen M. Optimal training design for MIMO OFDM systems in mobile wireless channels. Signal Processing, IEEE Transactions on, 2003 ;51 (6) : 1615-1624.
  • 6Guo D, Shamai S, Verda S. Mutual information and minimum mean- square error in Gaussian channels. Information Theory, IEEE Trans- actions on, 2005 ;51 (4) : 1261-1282.
  • 7Wan F, Zhu W P, Swamy M N S. Semiblind sparse channel estima- tion for MIMO-OFDM systems. Vehicular Technology, IEEE Transac- tions on, 2011 ;60(6) : 2569-2582.
  • 8Shin C, Heath R W, Powers E J. Blind channel estimation for MI- MO-OFDM systems. Vehicular Technology, IEEE Transactions on, 2007 ;56(2) :670--685.
  • 9Chen J C, Wen C K, Ting P. An efficient pilot design scheme for sparse channel estimation in OFDM systems. Communications Let- ters, IEEE, 2013;17(7) :1352-1355.
  • 10Candes E J, Tao T. Near-optimal signal recovery from random projec- tions : universal encoding strategies.'? Information Theory, IEEE Trans- actions on, 2006 ;52(12) : 5406-5425.

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部