期刊文献+

一种网络时延矩阵分布式自适应重建算法 被引量:1

An Adaptive Distributed Completion Algorithm for Network Latency Matrix
下载PDF
导出
摘要 该文基于互联网时延矩阵的近似稀疏性,通过给定重建矩阵的零范数先验估计,讨论了不完整时延矩阵在完全去中心化环境下的填充问题。首先,将该问题转化为一对耦合凸优化问题,并进行轮转求解;然后,针对次梯度下降求解算法中存在的计算代价过高与泛化能力不足的问题,提出了搜索上界倍增的自适应分布式矩阵重建(ADMC)算法,并引入不同的损失函数作为重建误差评价准则,以提升算法的适应能力。实验证明,在不增加测量与通信负载的前提下,ADMC能够在不损失精度的情况下显著降低计算代价,同时,多种损失函数的引入也提升了算法的鲁棒性。 On the basis of the low-rank characteristic of the Internet latency matrix, the in-complete latency matrix completion problem in full-decentralized environment is studied through setting a priori estimation of the l 0 norm of this matrix. First, the problem is componentized into a couple of convex optimization problems, thus it can be solved by alternative direction method. Then, to achieve low computation cost along with well generalization, an Adaptive Distributed Matrix Completion (ADMC) algorithm is proposed. ADMC doubles the upper-bound of the iterative step size searching area, and introduces several kinds of loss functions as the latency estimation error measures. Experiments show that, without losing any accuracy, ADMC reduces the computation cost significantly without any additional measurement or communication cost, and the introduced various loss functions also improve the robustness of the algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第4期840-846,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61133016) 广东省产学研重点项目(2012B091000054) 中央高校基本科研业务费(ZYGX2010J077)资助课题
关键词 计算机网络 时延估计 矩阵重建 稀疏模型 网络测量 最优化 Computer network Latency estimation Matrix completion Sparse model Network measurement Optimization
  • 相关文献

参考文献3

二级参考文献104

  • 1LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 2D D Lee, H S Seung. Learning the parts of objects by nonnega five matrix factorization [ J ]. Nature, 1999,401 (6755) : 788 - 791.
  • 3A Pascual-Montano, J M Carazo, K Kochik, et al. Nonsmooth nonnegative matrix factorization (nsNMF) [ J]. IEEE. Transac tions on Pattern Analysis and Machine Intelligence, 2006, 28 (3) :403 - 415.
  • 4A Cichocki, R Zdunek, S Amari. Nonnegative matrix and tensor Factorization[ J]. IEEE Signal Processing Magazine, 2008, 25 (1) : 142 - 145.
  • 5C Fevotte, N Bertin, J L Dun'ieu. Nonnegafive matrix factoriza tion with the Itakura-Saito divergence with application to music analysis[ J ]. Neural Computation, 2009,21 (3) : 793 - 830.
  • 6C Ding, X He, H D Simon. On the equivalence of nonnegative matrix factorization and spectral clustering[ A]. Proc. SIAM Intemafional Conference on Data Mining [ C ]. Newport Beach, California, 2005. 606 - 610.
  • 7W Xu, X Liu, Y Gong. Document-clustering based on non-neg ative matrix factorization[A]. Proc ACM SIGIRE C]. Toronto, Canada, 2003. 267 - 273.
  • 8H Kim, H Park. Sparse non-negative matrix factorizations via alternating non-negativity-conslrained least squares for microar ray data analysis [ J]. Bioinformatics, 2(107, 23 (12) : 1495 - 1502.
  • 9E J Candes,B Recht. Exact matrix completion via conve opti mization[ J]. Foundations of Computational Mathematics, 2009, 9(6) :717 - 772.
  • 10R H Keshavan, Oh Sewoong. A Montanari. Matrix completion from a few entries[ A ]. Proc IEEE International Symposium on Information Theory[ C]. Seoul, Korea, 2009. 324 - 328.

共引文献15

同被引文献17

  • 1Fleming B. New automotive electronics technologies[J]. IEEE Transactions on Vehicular Technology, 2012, 7(4): 4-12.
  • 2Tuohy S and Glavin M. Next generation wired intra-vehicle networks, a review[C]. Proceedings of IEEE on Intelligent Vehicles Symposium, Gold Coast, Australia, 2013: 777-782.
  • 3TTTech. Time-triggered protocol ttp/c, high-level specification document, protocol version 1.1[OL]. http:// www.tttech.com, 2014.
  • 4Berwanger J and Peller M. Byteflight -a new protocol for safety critical applications [C]. Proceedings of the 2000 FISITA World Automotive Congress, Seoul, Korea, 2000: 1-7.
  • 5Longo S and Herrmann G. Robust scheduling of sampled- data networked control systems[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1613-1621.
  • 6Ouedra:go L and Kumar R. Exact response time of flexray communication protocol[C]. Proceedings of Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 2011: 789-794.
  • 7Lange R and Vasques F. Guaranteeing real-time message deadlines in the flexray static segment using a on-line scheduling approach[C]. Proceedings of the 9th IEEE International Workshop on Factory Communication Systems, Lemgo, Germany, 2012: 301-310.
  • 8Tanasa B and Bordoloi U D. Reliability-aware frame packing for the static segment of flexray[C]. Proceedings of Emsoft, Taipei, China, 2011: 175-184.
  • 9Minkoo K and Kiejin P. Frame packing for minimizing the bandwidth consumption of the flexray static segment[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4001 4008.
  • 10Shan D. A hybrid GA-based scheduling method for static segment in flexray systems[C]. Proceedings of on Control and Decision, Xuzhou, China, 2010: 1548-1552.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部