期刊文献+

基于混沌特征的运动模式分割和动态纹理分类 被引量:3

Chaotic Features for Motion Pattern Segmentation and Dynamic Texture Classification
下载PDF
导出
摘要 采用混沌理论对动态纹理中的像素值序列建模,提取动态纹理中的像素值序列的相关特征量,将视频用特征向量矩阵表示.通过均值漂移(Mean shift)算法对矩阵中的特征向量聚类,实现对视频中的运动模式分割.然后,采用地球移动距离(Earth mover s distance,EMD)度量不同视频的差异,对动态纹理视频分类.本文对多个数据库测试表明:1)分割算法可以分割出视频中不同的运动模式;2)提出的特征向量可以很好地描述动态纹理系统;3)分类算法可以对动态纹理视频分类,且对视频中噪声干扰具有一定的鲁棒性. In this paper, we propose a novel framework for dynamical texture modeling based on chaos theory. Our method first extracts features from dynamical texutre and concatenate the features to a feature vector. A video is then represented by a feature matrix. The mean shift clustering algorithm is used to cluster the feature vector which achieves segmenting videos into different motion patterns. The earth mover's distance (EMD) is employed to compute the feature cluster similarities and classify the dynamic textures. Experimental results indicate that: 1) The segmentation algorithm can cluster different motion patterns in videos; 2) The feature vector proposed in this paper can effectively characterize the dynamical texture; 3) The proposed algorithm can classify dynamical texture accurately. In addition, the algorithm is robust to video noise.
作者 王勇 胡士强
出处 《自动化学报》 EI CSCD 北大核心 2014年第4期604-614,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61074106 61374161)资助~~
关键词 动态纹理 混沌特征 均值漂移 地球移动距离 Dynamic texture, chaotic features, mean shift, earth mover's distance (EMD)
  • 相关文献

参考文献25

  • 1Field D J. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 1987, 4(12): 2379-2394.
  • 2Doretto G, Chiuso A, Wu Y N, Soatto S. Dynamic textures. International Journal of Computer Vision, 2003, 51(2): 91-109.
  • 3Chan A B, Vasconcelos N. Mixtures of dynamic textures. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 641-647.
  • 4Chan A B, Vasconcelos N. Classifying video with kernel dynamic textures. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-6.
  • 5Chan A B, Vasconcelos N. Probabilistic kernels for the classification of auto-regressive visual processes. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 846-851.
  • 6Kantz H, Schreiber T. Nonlinear Time Series Analysis. Cambridge: Cambridge University Press, 1997.
  • 7Ali S, Basharat A, Shah M. Chaotic invariants for human action recognition. In: Proceedings of the 11th International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 8Wu Shan-Dong, Oreifej O, Shah M. Action recognition in videos acquired by a moving camera using motion decomposition of Lagrangian particle trajectories. In: Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1414-1426.
  • 9刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:142
  • 10Gorur P, Amrutur B. Speeded up Gaussian mixture model algorithm for background subtraction. In: Proceedings of the 8th International Conference on Advanced Video and Signal Based Surveillance. Klagenfurt, Austria: IEEE, 2011. 386-391.

二级参考文献125

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 2006, 70(2): 109-131.
  • 5Han S D, Tao W B, Wang D S, Tai X C, Wu X L. Image segmentation based on grabcut framework integrating multiscale nonlinear structure tensor. IEEE Transactions on Image Processing, 2009, 18(10): 2289-2302.
  • 6Delong A, Boykov Y. A scalable graph-cut algorithm for N-D grids. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 7Han S D, Tao W B, Wu X L, Tai X C, Wang T J. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters, 2010, 31(3): 216-225.
  • 8Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303--308.
  • 9Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 10Christoudias C M, Georgescu B, Meer P. Synergism in low level vision. In: Proceedings of the 16th International Conference on Pattern Recognition. Washington D.C., USA: IEEE, 2002. 150-155.

共引文献199

同被引文献25

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:238
  • 2王红平,齐春,李金标,张忠信.基于主成分分析的矿物浮选泡沫图像分类与识别[J].矿冶,2005,14(3):79-82. 被引量:7
  • 3D.W.莫尔曼.在浮选厂中数据图象处理与主机联机监测泡沫[J].国外金属矿选矿,1996,33(7):41-49. 被引量:1
  • 4Soatto S,Doretto G,Wu Y N.Dynamic Textures[C]∥Proceedings of the 8th International Conference on Computer Vision.Vancouver,Canada,2001:439-446.
  • 5Chetverikov D,Péteri R.A brief survey of dynamic texture description and recognition[C]∥International Conference on Computer Recognition Systems,2005:17-26.
  • 6Doretto G,Chiuso A,Wu Y N,et al.Dynamic textures[J].International Journal of Computer Vision,2003,51(2):91-109.
  • 7Zhao Guoying,Matti P.Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):915-928.
  • 8Chan A B,Vasconcelos N.Modeling,clustering,and segmenting video with mixtures ofdynamic textures[J].IEEE Trans Pattern Anal Machine Intell,2008,30(5):909-926.
  • 9Chan A B,Vasconcelos N.Layered dynamic textures[J].IEEE Trans Pattern Anal Machine Intell,2009,31(10):1862–1879.
  • 10Ravichandran A,Chaudhry R,Vidal R.Categorizing dynamic textures using a bag of dynamical systems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(2):342-353.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部