期刊文献+

基于指数损失和0-1损失的在线Boosting算法 被引量:2

Online Boosting Algorithms Based on Exponential and 0-1 Loss
下载PDF
导出
摘要 推导了使用指数损失函数和0-1损失函数的Boosting算法的严格在线形式,证明这两种在线Boosting算法最大化样本间隔期望、最小化样本间隔方差.通过增量估计样本间隔的期望和方差,Boosting算法可应用于在线学习问题而不损失分类准确性.UCI数据集上的实验表明,指数损失在线Boosting算法的分类准确性与批量自适应Boosting(AdaBoost)算法接近,远优于传统的在线Boosting;0-1损失在线Boosting算法分别最小化正负样本误差,适用于不平衡数据问题,并且在噪声数据上分类性能更为稳定. In this paper, strict derivation for the online form of Boosting algorithms using exponential loss and 0-1 loss is presented, which proves that the two online Boosting algorithms can maximize the average margin and minimize the margin variance. By estimating the margin mean and variance incrementally, Boosting algorithms can be applied to online learning problems without losing classification accuracy. Experiments on UCI machine learning datasets show that the online Boosting using exponential loss is as accurate as batch AdaBoost, and significantly outperforms the traditional online Boosting, and that the online Boosting using 0-1 loss can minimize classification errors of positive samples and negative samples at the same time, thus applies to imbalance data. Moreover, Boosting using 0-1 loss is more robust on noisy data.
出处 《自动化学报》 EI CSCD 北大核心 2014年第4期635-642,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60974129)资助~~
关键词 ADABOOST 在线学习 特征选择 不平衡数据 AdaBoost, online learning, feature selection, imbalance data
  • 相关文献

参考文献25

  • 1Freund Y, Schapire R E, Abe N. A short introduction to Boosting. Journal-Japanese Society for Artificial Intelligence, 1999, 14(5): 771-780.
  • 2Freund Y, Schapire R E. A desicion-theoretic generalization of on-line learning and an application to Boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 3曹莹,苗启广,刘家辰,高琳.AdaBoost算法研究进展与展望[J].自动化学报,2013,39(6):745-758. 被引量:267
  • 4Viola P, Jones M J. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137-154.
  • 5Zhang C, Zhang Z Y. A Survey of Recent Advances in Face Detection, Technical Report MSR-TR-2010-66, Microsoft Research, Redmond, WA, 2010.
  • 6Wu J X, Rehg J M, Mullin M D. Learning a rare event detection cascade by direct feature selection. [Online], available: http: //papers.nips.cc/paper/2353-learning-a-rare-event-detection-cascade-by-direct-feature-selection.pdf, October 25, 2012.
  • 7Bartlett P, Freund Y, Lee W S, Schapire R E. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 1998, 26(5): 1651-1686.
  • 8Grabner H, Grabner M, Bischof H. Real-time tracking via on-line Boosting. In: Proceedings of the 2006 British Machine Vision Conference. Edinburgh, British, 2006, 1: 4756.
  • 9Kuo C H, Nevatia R. How does person identity recognition help multi-person tracking? In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 1217-1224.
  • 10Yang B, Nevatia R. Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 1918-1925.

二级参考文献19

  • 1涂承胜,陆玉昌.Boosting视角[J].计算机科学,2005,32(5):140-143. 被引量:2
  • 2Mason L,Baxter J,Bartlett P,et al. Boosting algorithms as gra dient deseent[C] // Neural Information Processing Systems 12 Cambridge: MIT Press, 2000 : 512-518.
  • 3Friedman J, Hastie T, Tibshirani R. Additive logistic regression a statistical view of boosting[J]. The Annals of Statistics, 2000 28(2) : 337-407.
  • 4Seiffert C,Khoshgoftaar T M, Hulse J V, et al. RUSBoost: Im proving classification performance when training data is skewed [C]//Proceedings of 19th International Conference on Pattern Recognition. Washington DC: IEEE Computer Society, 2008:1-4.
  • 5Guo H Y,Viktor H L. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach[J]. SIGKDD Explorations, 2004,6 ( 1 ):30-39.
  • 6Sun Y,Kamel M S,Wong A K C, et al. Cost-sensitive boosting for classification of imbalanced data[J].Pattern Recognition, 2007,40(12) :3358-3378.
  • 7Li Q J, Mao Y B, Wang Z Q, et al. Cost-sensitive boosting: fit ring an additive asymmetric logistic regression model[C]//Proceedings of the 1st Asian Conference on Machine Learning: Advances in Machine Learning ( ACML ' 09 ). Berlin: Springer, 2009 : 234-247.
  • 8Masnadi-Shirazi H, Vaseoneelos N. Cost-sensitive boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(2) :294-309.
  • 9Newman D, Hettich S, Blake C, et al. UCI repository of machine learning data bases[DB/OL], http://www, ics. uci. edu/-mlearn/MLRepository, html, 2011-05-01.
  • 10Hanley J A,McNeil B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve [J]. Radiology, 1982,143(1):29-36.

共引文献287

同被引文献15

  • 1Hasan M A,Chaoji V, Salem S,et al.Link prediction using supervised learning[C]//In Proe.of SDM 06 workshop on Link Analysis, Cotmterterrorism and Security.Bethesda,MD, USA:lEEE Press,2006: 189-196.
  • 2Taskar B,Wong M,Abbeel P, et al.Link prediction in relational data[C]//In Advances in Neural Information Processing Systems.Lake Tahoe, Nevada,USA:IEEE Press,2013:235-242.
  • 3Clauset A,Moor~ C,Newman M.Struetural inference of hierarchies in networks [C]//23rd International Conference on Machine Learning.Pittsburgh, Pennsylvania,USA:IEEE Press,2006:332-339.
  • 4Vatzquez A.Growing network with local rules:Preferential attachment, clustering hierarchy, and degree correlations[J].Physical Review E,2013,67(5):56-104.
  • 5Palla G, Der6nyi I,Farkas I,et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2012, 43(7):814-818.
  • 6Xie Y B,Zhou T, Wang B H.Scale-free networks without growth[J]. Physica A:Statistical Mechanics and its Applications,2008,387(7): 1 683-1 688.
  • 7Dhillon l, Savas B,Zhang Y.Social network analysis:Fast and memory -efficient low-rank approximation of massive graphs[C].Householder Symposium XVIII on Numerical Linear Algebra,Lodge,Tahoe City, CA, IEEE,2011:55-63.
  • 8Rubin D B.A Calibrated naultielass extension of AdaI3oost[J].Statistical Applications in Genetics and Molecular Biology,2011,10( 1 ): 1-24.
  • 9P Sen, G M Namata,M Bilgic,et al.Collective classification in network data[J].AI Magazine,2008,29(3 ):93-106.
  • 10徐丹蕾,杜兰,刘宏伟,洪灵,李彦兵.一种基于变分相关向量机的特征选择和分类结合方法[J].自动化学报,2011,37(8):932-943. 被引量:6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部