期刊文献+

基于差异性的分类器集成:有效性分析及优化集成 被引量:19

Classifier Ensemble with Diversity: Effectiveness Analysis and Ensemble Optimization
下载PDF
导出
摘要 差异性是分类器集成具有高泛化能力的必要条件.然而,目前对差异性度量、有效性及分类器优化集成都没有统一的分析和处理方法.针对上述问题,本文一方面从差异性度量方法、差异性度量有效性分析和相应的分类器优化集成技术三个角度,全面总结与分析了基于差异性的分类器集成.同时,本文还通过向量空间模型形象地论证了差异性度量的有效性.另一方面,本文针对多种典型的基于差异性的分类器集成技术(Bagging,boosting GA-based,quadratic programming(QP)、semi-definite programming(SDP)、regularized selective ensemble(RSE))在UCI数据库和USPS数据库上进行了对比实验与性能分析,并对如何选择差异性度量方法和具体的优化集成技术给出了可行性建议. Diversity is a necessary condition for high generalization capability in classifier ensemble. However, ther exists no uniform analysis and operation methods for diversity measure, effectiveness analysis or ensemble optimizatio. To solve these issues, on the one hand, classifier ensemble with diversity is comprehensively summarized and analyze, from three aspects, i.e., diversity measurement methods, effectiveness analysis for diversity measurement methods an, optimization techniques for classifier ensemble. Moreover, the effectiveness of diversity is also demonstrated by the vecto space model. On the other hand, comparative experiments and analysis have been performed on UCI data sets and USPS data set with a variety of typical classifier ensemble methods (Bagging, boosting, GA-based, quadratic programming (QP), semi-definite programming (SDP), regularized selective ensemble (RSE)). Finally, we give some suggestions on how to select diversity measurement methods and optimization techniques in ensemble.
出处 《自动化学报》 EI CSCD 北大核心 2014年第4期660-674,共15页 Acta Automatica Sinica
基金 国家自然科学基金(61105018 61175020)资助~~
关键词 分类器集成 差异性 有效性分析 优化 Classifier ensemble, diversity, effectiveness analysis, optimization
  • 相关文献

参考文献67

  • 1Polikar R. Ensemble learning. Ensemble Machine Learning: Methods and Applications. New York: Springer, 2012. 1-34.
  • 2Zhou Z H. Ensemble Methods: Foundations and Algorithms. New York: CRC Press, 2012.
  • 3Lebanon G, Lafferty J. Boosting and maximum likelihood for exponential models. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002. 447-454.
  • 4Lee H, Kim E, Pedrycz W. A new selective neural network ensemble with negative correlation. Applied Intelligence, 2012, 37(4): 488-498.
  • 5Liu C L. Classifier combination based on confidence transformation. Pattern Recognition, 2005, 38(1): 11-28.
  • 6Shipp C A, Kuncheva L K. Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion, 2002, 3(2): 135-148.
  • 7Jiang L X, Cai Z H, Zhang H, Wang D H. Naive Bayes text classifiers: a locally weighted learning approach. Journal of Experimental & Theoretical Artificial Intelligence, 2013, 25(2): 273-286.
  • 8Yuksel S E, Wilson J N, Gader P D. Twenty years of mixture of experts. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(8): 1177-1193.
  • 9Shi L, Wang Q, Ma X M, Weng M, Qiao H B. Spam email classification using decision tree ensemble. Journal of Computational Information Systems, 2012, 8(3): 949-956.
  • 10Malisiewicz T, Gupta A, Efros A A. Ensemble of exemplar-SVMs for object detection and beyond. In: Proceedings of the 13th International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 89-96.

二级参考文献157

  • 1李强,裘正定,孙冬梅,刘陆陆.基于改进二维主成分分析的在线掌纹识别[J].电子学报,2005,33(10):1886-1889. 被引量:36
  • 2袁国武,魏骁勇,徐丹.基于掌纹的身份鉴别[J].计算机辅助设计与图形学学报,2005,17(12):2590-2595. 被引量:11
  • 3王长宇,宋尚玲,孙丰荣,梅良模.一种新的生物特征识别模式-手指背关节皮纹识别[J].自动化学报,2006,32(3):360-367. 被引量:2
  • 4王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 5Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 6Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 7Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 8Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 9Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 10Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.

共引文献214

同被引文献161

引证文献19

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部