期刊文献+

大规模图像集中的代表性图像选取 被引量:2

Representative Image Selection from Image Dataset
下载PDF
导出
摘要 针对传统图像检索系统通过关键字搜索图像时缺乏语义主题多样性的问题,提出了一种基于互近邻一致性和近邻传播的代表性图像选取算法,为每个查询选取与其相关的不同语义主题的图像集合.该算法利用互近邻一致性调整图像间的相似度,再进行近邻传播(AP)聚类将图像集分为若干簇,最后通过簇排序选取代表性图像簇并从中选取中心图像为代表性图像.实验表明,本文方法的性能超过基于K-means的方法和基于Greedy K-means的方法,所选图像能直观有效地概括源图像集的内容,并且在语义上多样化. In a traditional image retrieval system, people search images using keywords. However, the result shows a lack of diversity in the sense of semantic theme. For the problem, we propose a viable method for representative image selection. We define representative images as those with diverse contents in the semantic meaning to cover different semantic forms of a query. First, we use mutual nearest neighbor consistency to adjust the similarity between images as the input to the AP clustering. Then we select representative clusters based on cluster ranking and finally take the images of the cluster center from representative clusters as a summary of the image dataset. The results showed that the performance of our method is better than the K-means based method and the greedy K-means based method. The selected images can summarize the content of the original image dataset intuitively and effectively, and they are diverse in semantic meaning as well.
出处 《自动化学报》 EI CSCD 北大核心 2014年第4期706-712,共7页 Acta Automatica Sinica
基金 国家自然科学基金(61172164)资助~~
关键词 代表性图像 语义主题 互近邻一致性 AP聚类 图像簇排名 Representative images, semantic theme, AP clustering, mutual nearest neighbor consistency, cluster ranking
  • 相关文献

参考文献21

  • 1Wang M, Yang K Y, Hua X S, Zhang H J. Towards a relevant and diverse search of social images. IEEE Transactions on Multimedia, 2010, 12(8): 829-842.
  • 2Zha Z J, Yang L J, Mei T, Wang M, Wang Z F, Chua T S, Hua X S. Visual query suggestion: towards capturing user intent in internet image search. ACM Transactions on Multimedia Computing, Communications, and Applications, 2010, 6(3): 1-19.
  • 3Tang X O, Liu K, Cui J Y, Wen F, Wang X G. IntentSearch: capturing user intention for one-click internet image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1342-1353.
  • 4Fan J P, Kem D A, Gao Y L, Luo H Z, Li Z M. JustClick: personalized image recommendation via exploratory search from large-scale flickr images. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(2): 273-288.
  • 5Gao Y, Tang J H, Hong R, Dai Q H, Chua T S, Jain R. W2Go: A travel guidance system by automatic landmark ranking. In: Proceedings of the international conference on Multimedia. New York, USA: ACM, 2010. 123-132.
  • 6Hong R, Tang J H, Tan H K, Ngo C W, Yan S C, Chua T S. Beyond search: event driven summarization for web videos. ACM Transactions on Multimedia Computing, Communications, and Applications, 2011, 7(4): 1-21.
  • 7Yang L J, Hanjalic A. Supervised reranking for web image search. In: Proceedings of the international conference on Multimedia. New York, USA: ACM, 2010. 183-192.
  • 8Hama H, Zin T T, Tin P. A hybrid ranking of link and popularity for novel search engine. International Journal of Innovative Computing, Information and Control, 2009, 5(11): 4041-4049.
  • 9Jaffe A, Naaman M, Tassa T, Davis M. Generating summaries for large collections of geo-referenced photographs. In: Proceedings of the 15th international conference on World Wide Web. New York, USA: ACM, 2006, 853-854.
  • 10Simon I, Snavely N, Seitz S M. Scene summarization for online image collections. In: Proceedings of IEEE 11th International Conference on Computer Vision. Rio de Janeiro: IEEE, 2007, 1-8.

二级参考文献35

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 3Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433.
  • 4Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 5Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 6Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 7Lowe D G. Distinctive image features from scale invariant key points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision. Corfu, Greece: IEEE, 1999. 1150-1157.
  • 9Shotton J, Blake A, Cipolla R. Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 30(7): 1270-1281.
  • 10Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Ro- bust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426.

共引文献96

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部