期刊文献+

一种分步的融合时空信息的背景建模 被引量:4

A Stepwise Background Subtraction by Fusion Spatio-temporal Information
下载PDF
导出
摘要 自然场景中的光照突变和树枝、水面等不规则运动是背景建模的主要困难.针对该问题,提出一种分步的融合时域信息和空域信息的背景建模方法.在时域,采用具有光照不变性的颜色空间表征时域信息,并提出对噪声和光照突变具有较好适应性的码字聚类准则和自适应背景更新策略,构造了对噪声和光照突变具有较好适应性的时域信息背景模型.在空域,通过采样将测试序列图像分成两幅子图,而后利用时域模型检测其中一幅子图,并将检测结果作为另一幅子图的先验信息,同时采用马尔科夫随机场(Markov random field,MRF)对其加以约束,最终检测其状态.在多个测试视频序列上的实验结果表明,本文背景模型对于自然场景中的光照突变和不规则运动具有较好的适应性. In a natural scene, it is difficult to create a background model for the presence of illumination variation and irregular motions including waving trees, rippling water, etc. This paper proposes a new stepwise algorithm by fusing spatio-temporal information. In the time domain, we characterize the temporal information in the color space which is invariant to photometric changing. On this basis, we propose a clustering criterion of codeword which is adaptive to noise and illumination variation, and present a novel adaptive background updating strategy. Then a temporal information background model which has a better adaptability to noise and photometric invariants is constructed. In the spatial domain, we first divide the test frame into two sub-images by sampling and then utilize temporal information to detect one of them. Yhrthermore, we regard the detection results as priori information of the other sub-image and adopt Markov random field to restrict it simultaneously, then detect its state. Extensive experiments are conducted on several test video sequences. Compared with the mixture of Gaussians (MOG), standard codebook model (SCBM), and improved codebook model (ICBM), the results show that out algorithm has better adaptability to the illumination variation and irregular movement in natural scenes.
出处 《自动化学报》 EI CSCD 北大核心 2014年第4期731-743,共13页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2009CB320902) 国家自然科学基金(61263046) 中国航天科技集团公司航天科技创新基金(CASC201102)资助~~
关键词 时空背景模型 前景检测 马尔科夫随机场 码本 Spatio-temporal background model, foreground detection, Markov random field (MRF), codebook
  • 相关文献

参考文献21

  • 1齐玉娟,王延江,李永平.基于记忆的混合高斯背景建模[J].自动化学报,2010,36(11):1520-1526. 被引量:19
  • 2王永忠,梁彦,潘泉,程咏梅,赵春晖.基于自适应混合高斯模型的时空背景建模[J].自动化学报,2009,35(4):371-378. 被引量:78
  • 3Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 4Horprasert T, Harwood D, Davis L S. A statistical approach for real-time robust background subtraction and shadow detection. In: Proceedings of the 12th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1-19.
  • 5Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the 14th International Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 246-252.
  • 6Chen G, Yu Z Z, Wen Q, Yu Y Q. Improved Gaussian mixture model for moving object detection. Artificial Intelligence and Computational Intelligence, 2011, 7002: 179-186.
  • 7Kim K, Chalidabhongse T H, Harwood D, Davis L. Real-time foreground-background segmentation using codebook model. Real-Time Imaging, 2005, 11(3): 172-185.
  • 8赵旭东,刘鹏,唐降龙,刘家锋.一种适应户外光照变化的背景建模及目标检测方法[J].自动化学报,2011,37(8):915-922. 被引量:18
  • 9Yin Z Z, Collins R. Belief propagation in a 3D spatio-temporal MRF for moving object detection. In: Proceedings of the 23rd Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA: IEEE, 2007. 1-8.
  • 10Migdal J, Grimson W E L. Background subtraction using Markov thresholds. In: Proceedings of the 7th Workshop on Application of Computer Vision. Breckenridge, USA: IEEE, 2005. 58-65.

二级参考文献65

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 3Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 4Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 5Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 6Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 7Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271
  • 8Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163
  • 9Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301
  • 10Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261

共引文献110

同被引文献22

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部