期刊文献+

数学可应用性的一种认知解释——以自由落体方程为例 被引量:4

A Cognitive Account about Applicability of Mathematics——A case study of free falling body
原文传递
导出
摘要 数学可应用性问题一直未能被很好的解释,近期一种结构主义进路的"映射"理论被提出,认为可以仅仅通过诉诸数学与其所应用的领域之间的结构相似性来解释数学的可应用性。但该理论无法解释在某些数学应用的情况中,为何一些数学解无物理对应物。从认知的角度引入一种与映射理论相容的数学认知理论,通过解释数学与其所应用的领域之间结构相似性的认知来源,可以解释映射理论无法说明的问题。通过分析一个具体的自由落体方程负数解的案例可以展现从认知进路解释数学可应用性的可行性。 The applicability of mathematics has always not been explained well. A mapping account wanted to explain it by appealing to structural similarity between mathematical structure and structure of the world. But this mapping account couldn't explain why some mathematical solution have not physical counterpart. I try to explain the applicability of mathematics by explaining where structural similarity comes from by a cognitive theory of mathematics. And I will analyze a case about free failing body which have a negative mathematical solution with no physical counterpart.
作者 王东
出处 《自然辩证法研究》 CSSCI 北大核心 2014年第4期35-40,共6页 Studies in Dialectics of Nature
关键词 数学可应用性 数学认知 自由落体 applicability of mathematics mathematical cognition free falling body
  • 相关文献

参考文献10

  • 1Wigner, E. P. The Unreasonable Effectiveness of Mathematics in the Natural Sciences[J]. Communications on Pure and Ap- plied Mathematics, 1960, 13:1-14.
  • 2Colyvan, Mark. The Miracle of Applied Mathematics [J]. Syn- these, 2001, 127:265-277.
  • 3Pincock, Christopher. A Revealing Flaw in Colyvan's Indis- pensability Argument [J]. Philosophy of Science, 2004, 71: 61-79.
  • 4Pincock, Christopher. A New Perspective on the Problem of Applying Mathematics [J]. Philosophia Mathematica, 2004, 12 (2): 135-161.
  • 5Jairo Joseda Silva. Structuralism and the Applicability of Mathematics [J]. Axiomathes, 2010, 20:229-253.
  • 6Baker, Alan. The Indispensability Argument and Multiple Foundations for Mathematics[J].Philosophical Quarterly, 2003, 53(210): 49-67.
  • 7Leng, Mary. What's Wrong with Indispensability?(Or the Case for Recreational Mathematics)[J]. Synthese, 2002, 131: 395- 417.
  • 8Bueno, Otavio. An Inferential Conception of the Application of Mathematics. Nous, 2011, 45 (2):345-374.
  • 9Lakoff, G., Nunez, R. Where Mathematics Comes From: How The Embodied Mind Brings Mathematics Into Being [M]. New York: Basic Books, 2000.
  • 10Nunez, R. Numbers and Arithmetic: Neither Hard-wired nor Out There [J]. Biological Theory, 2009, 4(1):68-83.

同被引文献42

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部