期刊文献+

基于Laplace分布和CVaR的投资组合模型研究 被引量:3

Research on Investment Portfolio Model Based on Laplace Distribution and CVaR
下载PDF
导出
摘要 金融资产收益率的实际分布具有显著的尖峰肥尾性,Laplace分布比正态分布能更好地刻画尖峰肥尾性;引入Laplace分布,得到了风险价值VaR和条件风险价值CVaR的计算公式;建立了均值-CVaR投资组合模型,得到了模型有效前沿和最优解的表达式;最后采用沪深股市的股票进行实证研究,并与正态分布下的均值-CVaR有效前沿进行了比较,结果表明了模型的有效性和算法的合理性. The real distribution of financial assets earnings has the obvious characteristics of steep peaks and heavy tails and Laplace distribution can better describe the characteristics than normal distribution. This paper obtains the computation formula of value at risk (VaR) and conditional value at risk (CVaR) by introducing Laplace distribution, sets up mean-CVaR investment portfolio model, receives the formula of the efficient frontier of the model and optimal solution, and finally uses the data of Shanghai Stock Exchange and Shenzhen Stock Exchange to conduct empirical research and to compare it with the efficient frontier of mean-CVaR under normal distribution. The results reveal the validity of the model and the rationality of the algorithm.
出处 《重庆工商大学学报(自然科学版)》 2014年第4期1-7,共7页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 上海高校青年教师培养资助计划(shyc005)
关键词 LAPLACE分布 均值-CVAR模型 投资组合 有效前沿 实证分析 Laplace distribution mean-CVaR Model investment portfolio efficient frontier empirical analysis
  • 相关文献

参考文献7

二级参考文献33

共引文献77

同被引文献28

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部