期刊文献+

Consistency of kernel density estimators for causal processes 被引量:3

Consistency of kernel density estimators for causal processes
原文传递
导出
摘要 Using the blocking techniques and m-dependent methods,the asymptotic behavior of kernel density estimators for a class of stationary processes,which includes some nonlinear time series models,is investigated.First,the pointwise and uniformly weak convergence rates of the deviation of kernel density estimator with respect to its mean(and the true density function)are derived.Secondly,the corresponding strong convergence rates are investigated.It is showed,under mild conditions on the kernel functions and bandwidths,that the optimal rates for the i.i.d.density models are also optimal for these processes. Using the blocking techniques and m-dependent methods,the asymptotic behavior of kernel density estimators for a class of stationary processes,which includes some nonlinear time series models,is investigated. First,the pointwise and uniformly weak convergence rates of the deviation of kernel density estimator with respect to its mean(and the true density function) are derived. Secondly,the corresponding strong convergence rates are investigated. It is showed,under mild conditions on the kernel functions and bandwidths,that the optimal rates for the i.i.d. density models are also optimal for these processes.
出处 《Science China Mathematics》 SCIE 2014年第5期1083-1108,共26页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11171303 and 61273093) the Specialized Research Fund for the Doctor Program of Higher Education(Grant No.20090101110020)
关键词 kernel density estimator consistency rate dependent measure causal process 核密度估计 一致性 时间序列模型 强收敛速度 拦截技术 平稳过程 渐近行为 密度函数
  • 相关文献

参考文献1

二级参考文献5

  • 1邵启满,Acta Math Appl Sin,1990年,6卷,3期
  • 2邵启满,1989年
  • 3邵启满,数学学报,1988年,31卷,736页
  • 4林正炎,数学进展,1987年,16卷,97页
  • 5柴根象,科学通报,1986年,31卷,21期,1605页

共引文献4

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部