摘要
本文研究了非线性马尔科夫跳变系统的H∞控制问题.研究上述系统时:1)利用了非线性的概率分布信息;2)利用了转移概率中已知部分和未知部分的关系.利用李雅普诺夫泛函方法和线性矩阵不等式方法,本文得到了使得系统随机稳定的充分条件并得到了相应的反馈控制增益.文中最后给出的例子表明了所建立模型和分析方法的有效性.
This paper considers nonlinear H∞ control for Markovian jump systems.In considering the above mentioned systems we have made use of:1) the information of the nonlinear probability distribution; 2) the relationship between the known part and the unknown part of the transition probabilities.By using the linear matrix inequality technique,we obtained the sufficient conditions of stochastic stability for the systems and feedback gains for the H 1 controller based on the Lyapunov function method.A numerical example shows the effectiveness of the proposed modeling and the design approach.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2014年第3期392-396,共5页
Control Theory & Applications
基金
supported by the National Natural Science Foundation of China(61273114,61273115)
the Natural Science Foundation of Jiangsu Province of China(BK2012847,BK2012469)
关键词
随机非线性
部分转移概率未知
马尔科夫跳变系统
probabilistic nonlinearity
partially unknown transition probabilities
Markovian jump systems