期刊文献+

弹性杆自接触问题数值模拟的一类罚函数方法

A Penalty Function Approach for Simulating the Self-contact of a Slender Elastic Rod
下载PDF
导出
摘要 弹性杆自接触问题的数值计算的一个困难是弹性杆出现自接触时,拓扑结构发生变化。为了解决此问题,引入静电斥力作为惩罚函数,通过对电荷强度的调节,实现接触的"软着陆",从而较好地解决了弹性杆的穿越和拓扑结构变化带来的困难。通过引入Cosserat方程的四元数表示和弹性杆接触集合的检测方法,完善了计算方法的设计。 A computational difficulty in simulating a slender elastic rod with self-contacts is the change of its topological structure at the contact point set. To solve the problem, an artificial electric static repulsion is introduced as the penalty factor in numerical simulation. By adjusting the intensity of the repulsion, the contact can be achieved smoothly so that the difficulty can be solved. We also introduce a quaternion ex- pression of the Cosserat model and a test criterion of the contact set to imnrove the mlmPrienl ~nnrr~,-h
出处 《青岛大学学报(自然科学版)》 CAS 2014年第1期1-7,11,共8页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(批准号:110721120)资助
关键词 弹性杆 自接触 静电斥力 罚函数 四元数 elastic rod self-contact electric static repulsion penalty function quaternion
  • 相关文献

参考文献10

  • 1Bustamante C, Bryant Z. Ten years of tension: single-molecule DNA mechanicsEJ. Nature, 2003,421.. 423 -427.
  • 2Antman S S. Nonlinear Problems of Elasticity[M]. New York:Spring-Verlag, 1994.
  • 3Coleman B. D, Swigon D. Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids[J]. J. of Elasticity, 2000,60(3): 173-221.
  • 4Damien Durville. Contact-friction modeling within elastic beam assemblies: an application to knot tightening[J]. Comput Mech, 2012,49 (6) :687 - 707.
  • 5Jonas Spillmann. CORDE:Cosserat Rod Elements for the Animation of Interacting Elastic Rods[D]. 2008.
  • 6Cao D Q, Robin W Tucker, Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and Simulation [J]. International Journal of Solids and Structures, 2008,45(2) :460 - 477.
  • 7Lazarus A, Miller J T, Reis P M. Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method[J]. Journal of the Mechanics and Physics of Solids,2013,61:1712 -1736.
  • 8Kathleen A Hoffman, Thomas I Seidman. A variational characterization of a hyperelastic rod with hard self-contact[J]. Nonlinear Analy- sis 2011,74:5388 - 5401.
  • 9Chamekh M, Mani-Aouadi S, Moakber M. Modeling and numerical treatment of elastic rods with frietionless self-contact[J]. Comput Methods Appl. Mech. Engrg, 2009,198: 3751-3764.
  • 10Yoav Y Biton, Bernard D Coleman. Theory of the in uence of changes in salt concentration on the con guration of intrinsically curved, im- penetrable, rod like structures modeling DNA minicircles[J]. International Journal of Non-Linear Mechanics, 2010,45:735 -755.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部