期刊文献+

溶液中木质素和葡萄糖的超滤分离 被引量:2

Separation of lignin and glucose in solutions by ultrafiltration
下载PDF
导出
摘要 以木质素和葡萄糖的混合溶液为木质纤维素水解液模型,采用截留相对分子质量为5 000的卷式聚醚砜膜对葡萄糖和木质素进行全回流模式的分离,探讨了木质素和葡萄糖浓度、操作压力、错流速率对通量、木质素和葡萄糖截留率的影响。结果表明:在实验条件范围内,通量随葡萄糖浓度和木质素浓度的增加而降低,并随操作压力、错流速率的增加而增加。木质素截留率不受任何条件的影响,基本稳定在97%。葡萄糖截留率随木质素浓度的增加而增加,并随错流速率的增加而减小。在0.8 g/L的木质素质量浓度条件下,当错流速率从0.12 m/s增加到0.17 m/s时,葡萄糖截留率从14%减小到7.3%。由此可见,在混合溶液的超滤过程中,通过合理选择错流速率,能够改善木质素和葡萄糖的分离。 Solutions of lignin and glucose were used as models of lignocellulose hydrolysates, and the lignin and the glucose were separated using a spiral-wound polyethersulfone membrane with a molecular weight cut-off of 5 000.The effects of lignin concentration and glucose concentration,applied pressure and crossflow velocity on solution flux, lignin retention and glucose retention were discussed.Under the experimental conditions,the solution flux decreased with increasing of glucose concentration and lignin concentration, and increased with increasing of applied pressure and crossflow velocity.The lignin retention was almost constant at 97% .The glucose retention increased with increasing of lignin concentration, and decreased with increasing of crossflow velocity.Under the condition of a lignin concentration at 0.8 g/L,the glucose retention decreased from 14% to 7.3% when the crossflow velocity increased from 0.12 m/s to 0.17 m/s.A suitable crossflow velocity could improve the ultrafiltration separation of the lignin and the glucose.
出处 《生物加工过程》 CAS CSCD 2014年第2期56-62,共7页 Chinese Journal of Bioprocess Engineering
基金 国家重点基础研究发展计划(973计划)(2009CB724700)
关键词 酶解 葡萄糖 木质素 木质纤维素 膜分离 enzymatic hydrolysis glucose lignin lignocellulose membrane separation enzymatic hydrolysis glucose lignin lignocellulose membrane separation
  • 相关文献

参考文献19

  • 1Wang L, Chen H Z. Increased hydrolyzed steam-exploded corn fermentability of enzymatically stover for butanol production by removal of fermentation inhibitors [ J ]. Process Biochem, 2011, 46 : 604-607.
  • 2薛珺,蒲欢,孙春宝.纤维素稀酸水解产物中发酵抑制物的去除方法[J].纤维素科学与技术,2004,12(3):48-53. 被引量:15
  • 3Qureshi N, Saha B C, Hector R E, et al. Production of butanol ( a biofuel) from agricultural residues:part Ⅱ. use of com stover and switchgrass hydrolysates [ J ]. Biomass Bioenergy, 2010, 34: 566-571.
  • 4Larsson S, Reimann A, Jonsson L, et al. Comparison of different methods for the detoxifieation of lignocellulosie hydrolysates of spruce [ J ]. Appl Microbiol Biotech, 1999,77 : 91 - 103.
  • 5Cho D H, Lee Y J, Um Y, et al. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii[ J ]. Appl Microbiol Biotech, 2009,83 : 1035-1043.
  • 6Wallberg O,Anders H,Jonsson A S. Kraft cooking liquors from a continuous cooking process[J]. Desalination, 2005, 180: 109-118.
  • 7Dafinov A, Font J, Ricard G V. Processing of black liquors by UF/NF ceramic membranes [ J ]. Desalination, 2005,173 : 83-90.
  • 8Wallberg O, Jarwon A S, Roland W. Ultrafihration of kraft black liquor with a ceramic membrane [ J ]. Desalination, 2003, 156 : 145-153.
  • 9Zabkova M, Silva E A B, Rodrigues A E. Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultra.filtration membranes[J]. J Membrane Sci, 2007, 301: 221-237.
  • 10Sun R, Mark L J, Banks W B, et al. Effect of extraction procedure on the molecular weight of wheat straw lignins[ J] .Ind Crop Prod, 1997,6:97-106.

二级参考文献27

  • 1Wilson J J, Deschatelets L, Nishikawa N K. Comparative fermentability of enzymatic and acid hydrolysates of steampretreated aspenwood hemicellulose by Pichia stipitis CBS 5776[J]. Appl Microbiol Biotechnol, 1989, 31: 592-596.
  • 2Eken-Sara(g)oelu N, Arslan Y. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae[J]. Biotechnol Lett, 2000, 22: 855-858.
  • 3Lindén T, Peetre J, Hahn-H?gerdal B. Isolation and characterisation of acetic acid tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor plant[J]. Appl Environ Microbiol, 1992, 58: 1661-1669.
  • 4Palmqvist E, Galbe, M Hahn-H?gerdal B. Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of spruce with Saccharomyces cerevisiae and on-line monitoring of glucose and ethanol[J]. Appl Biochem Biotechnol, 1998, 50: 545-551.
  • 5Larsson S, Palmqvist E, Hahn-H?gerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enz Microb Technol, 1998, 24: 151-159.
  • 6Boyer L J, Vega K, Klasson K T, et al. The effects of furfural on ethanol production by Saccharomyces cerevisiae[J]. Biomass Bioeng, 1992, 3(1): 41-48.
  • 7Banerjee N, Bhatnagar R, Viswanathan L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae[J]. Eur J Appl Microbiol Biotechnol, 1981b, 11: 226-228.
  • 8Palmqvist E, Hahn-H(a)gerdal B, Galbe M, et al. The effect of water-soluble inhibitors from team-pretreated willow on enzymatic hydrolysis and ethanol fermentation[J]. Enz Microb Technol, 1996b, 19: 470-476.
  • 9Clark T, Mackie K L. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata[J]. J Chem Biotechnol, 1984, B34: 101-110.
  • 10Larsson S, Reimann A, J?nsson, L. Comparison of different methods for the detoxification of lignocellulosic hydrolysates of spruce[J]. Appl Microbiol Biotechnol, 1999, 77-79: 91-103.

共引文献19

同被引文献35

  • 1卢群,刘晓艳,丘泰球,罗登林.超声对酵母细胞膜通透性的影响[J].食品与发酵工业,2005,31(9):14-17. 被引量:20
  • 2李强,王晓轩,赵明哲,郑丕泉,刘秋明.不同结构大单体合成聚羧酸高效减水剂及其性能研究[J].新型建筑材料,2007,34(10):37-40. 被引量:22
  • 3Cheng J J,Timilsina G R.Status and barriers of advanced biofuel technologies : a review [ J ].Renew Energ, 2011,36 : 3541-3549.
  • 4Chen H Z, Qiu W H. Key technologies for bioethanol production from lign0eellulose[ J] .Bioteehuol Adv ,2010,28:552-556.
  • 5Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates : inhibition and detoxification [ J ]. Bioresour Technol, 2000,74:17-24.
  • 6Ezeji T, Qureshi N, Blaschek H P. Butanol production from agricultural residues : impact of degradation products on Clostridium beijerinckii growth and butanol fermentation [ J ]. Biotechnol Bioeng,2007,97 : 1460-1469.
  • 7Qureshi N, Ezeji T C, Ebener J, et al. Butanol production by Clostridium beijerinekii.Part I:use of acid and enzyme hydrolyzed corn fiber [ J ].Bioresour Teehnol, 2008,99 ( 13 ) : 5915-5922.
  • 8Zaldivar J, Martinez A, Ingram L O. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli [ J ].Biotechnol Bioeng, 1999,65 : 24-33.
  • 9吴玉峰.木质素及其衍生物负载型催化剂的制备及其对c-c偶联反应的催化性能研究[D].郑州:河南大学,2009.
  • 10Cho D H,Lee Y J, Um Y, et al.Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii[ J]. Appl Microbiol Biotechnol, 2009,83 : 1035-1043.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部