期刊文献+

乙醇对低磨料CMP过程中铜膜凹凸处去除速率选择性的影响 被引量:1

Effect of Ethanol on the Rate Selectivity of Copper Film Concave Position and Convex Position in the CMP Process with Low Abrasive Concentration
下载PDF
导出
摘要 根据相似相容原理,在低磨料浓度CMP过程中,利用乙醇对多羟多胺螯合剂的降黏特性来提高铜膜表面凹凸处抛光速率的选择性。根据抛光液中各组分浓度对动态和静态条件下铜膜去除速率的影响获得乙醇加入量的最大值;通过螯合剂、氧化剂与乙醇对动静态条件下铜膜去除速率的相互作用关系来确定各组分的最佳浓度。最终得出当各组的体积分数为:磨料0.5%,螯合剂10%,H2O20.5%,乙醇1%时,铜膜表面拥有最大的凸处和凹处速率比。在MIT 854铜布线片上进行平坦化试验,结果表明:该抛光液能够很大程度的减小布线表面的高低差,拥有较强的平坦化能力。红外光谱检测结果表明:在CMP过程中,铜膜表面不会生成副产物乙酸乙酯。上述结果进一步证实了该抛光液的实用性。 According to the similarity law, in the chemical mechanical polishing(CMP) process with low abrasive concentration, the rate selectivity of copper film concave position and convex position can be sharply improved using the reducing viscosity properties of ethanol on the chelating agent with polyhydric and polyamine. According to the influence of slurry components concentration on removal rate of Cu film under CMP and static conditions, the maximum amount of ethanol was obtained. Through the interaction of chelating agent, oxidizing agent and ethanol on the copper film removal rate under CMP and static conditions, the best concentration of each component was acquired. When the abrasive concentration(volume fraction) is 0.5%, agent concentration is 10%, the H2O2 concentration is 0.5%, and the ethanol concentration is 1%, the largest rate selectivity of concave position and convex position is acquired on the copper surface. The planarization experiment was conducted on MIT 854 wafer surface. The results show that: the slurry with strong planarization ability can significantly reduce the wiring surface step height. In the CMP process, the ethyl acetate as the byproduct will not be generated, which further confirms the usefulness of the slurry.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2014年第2期95-101,共7页 China Surface Engineering
基金 国家中长期科技发展规划02科技重大专项(2009ZX02308) 河北省自然科学基金(E2013202247 F2012202094) 河北省教育厅基金(2011128)
关键词 化学机械抛光 乙醇 速率选择性 静态腐蚀 乙酸乙酯 chemical mechanical polishing(CMP) ethanol rate selectivity static corrosion ethyl acetate
  • 相关文献

参考文献15

  • 1李炎,刘玉岭,牛新环,卜小峰,李洪波,唐继英,樊世燕.Application of a macromolecular chelating agent in chemical mechanical polishing of copper film under the condition of low pressure and low abrasive concentration[J].Journal of Semiconductors,2014,35(1):146-150. 被引量:14
  • 2Wang S L, Yin K D, Li X, et al. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinet- ics [J]. Journal ot- Semiconductors, 2013, 34(8) : 1-4.
  • 3Yin K D, Wang S L, Liu Y I., et al. Evaluation of planari zation capability of copper slurry in the CMP process [J]. Journal of Semiconductors, 2013, 34(3): 1-4.
  • 4Kim N H, LimbJ H, Kim S Y, et al. Effects of phosphor ic acid stabilizer on copper and tantalum nitride CMP [J]. Materials I.etters, 2003, 57(29): 4601-4.
  • 5Krishnan M, Nalaskowski J W, CookLee M. Chemical me chanical planarization: slurry chemistry, materials, and mecha nisms [J]. Chemical Reviews, 2010, 110(1): 178- 203.
  • 6Chiu S Y, Wang Y L, Liu C P, et al. High-selectivity damascene chemical mechanical polishing [J]. Thin Solid Films, 2006, 498(1/2): 60-63.
  • 7Matijevic E, Bahu S V. Colloid aspects of chemical-me- chanical planarization [J]. Journal of Colloid and Interface Science, 2008, 320(1): 219-237.
  • 8Vijayakumara A, Dua T, Sundarama K B, et al. Polishing mechanism of tantalum films by SiOz particles [J]. Micro- electronic Engineering, 2003, 70(1): 93-101.
  • 9Chen Y H, Tsai T H, Yen S C. Acetic acid and phosphoric acid adding to improve tantalum chemical mechanical polis- hing in hydrogen peroxide-based slurry [J]. Microelec- tronic Engineering, 2010, 87(2): 174-179.
  • 10Janja S V S B, Peethalaa B C, Zheng J P, et al. Electro- chemical investigation of surface reactions for chemically promoted chemical mechanical polishing of TaN in tartaric acid solutions [J]. Materials Chemistry and Physics, 2010, 123(2/3): 521-528.

二级参考文献8

  • 1Pandija S, Roy D, Babu S V. Achievement of high planarization efficiency in CMP of copper at a reduced down pressure. Micro- electron Eng, 2009, 86:367.
  • 2Zhang W, Lu X, Liu Y, et al. lnhibitors tbr organic phosphonic acid system abrasive free polishing ofCu. Appl Surf Sci, 2009, 255:4114.
  • 3Murata J, Sadakuni S, Okamoto T. Structural and chemical characteristics of atomically smooth GaN surfaces prepared byabrasive-free polishing with Pt catalyst. J Cryst Growth, 2012, 349:83.
  • 4Ng D, Kulkarni M, Johnson J. Oxidation and removal mech- anisms during chemical-mechanical planarization. Wear, 2007, 263:1477.
  • 5Oh S, Seok J. An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes. Wear, 2009, 266(7/8): 839.
  • 6Zheng J P, Roy D. Electrochemical examination of surface filmsformed during chemical mechanical planarization of copper in acetic acid and dodecyl sulfate solutions. Thin Solid Films, 2009, 517(16): 4587.
  • 7Shattuck K G, Lin J Y, Cojocaru P. Characterization of phosphate electrolytes for use in Cu electrochemical mechanical planariza- tion. Electrochemical Acta, 2008, 53:8211.
  • 8Yang J C, Oh D W, Lee G W, et al. Step height removal mecha- nism of chemical mechanical planarization (CMP) for sub-nano- surface finish. Wear, 2010, 268(3/4): 505.

共引文献13

同被引文献20

  • 1王胜利,袁育杰,刘玉岭.铜CMP中工艺参数对抛光速率的影响[J].润滑与密封,2006,31(7):113-114. 被引量:8
  • 2Krishnan M, Nalaskowski J W, CookLee M. Chemical mechanical planarization: slurry chemistry, materials, and mechanisms [ J]. Chemical Reviews, 2010, 110 (1) : 178.
  • 3Matijevic E, Babu S V. Colloid aspects of chemical mechanical planarization [ J ]. Journal of Colloid and In- terface Science, 2008, 320(1): 219.
  • 4Sulyma C M, Roy D. Vohammetric current oscillations due to general and pitting corrosion of tantalum: implica- tions for electrochemical mechanical planarization [ J ]. Corrosion Science, 2010, 52(9): 3086.
  • 5Chiu S Y, Wang Y L, Liu C P. High-selectivity dama- scene chemical mechanical polishing [ J ]. Thin Solid Films, 2006, 498( 1/2): 60.
  • 6Lee H, Joo S, Jeong H. Mechanical effect of colloidal silica in copper chemical mechanical planarization [ J]. Journal of Materials Processing Technology, 2009, 209 (20) : 6134.
  • 7Gao F, Liang H. Material removal mechanisms in elec- trochemical mechanical polishing of tantalum [J]. Elec- trochimica Acta, 2009, 54(27): 6808.
  • 8Oh S, Seok J. An integrated material removal model for silicon dioxide layers in chemical mechanical polis- hing processes [ J ]. Wear, 2009, 266 (7-8) : 839.
  • 9Tsai T C, Tsao W C, Lin W, Hsu C L. CMP process development for the via-middle 3D TSV applications at 28 nm technology node [ J ]. Microeletronic Engineering, 2012, 92(3) : 29.
  • 10Zheng J P, Roy D. Electrochemical examination of surface films formed during chemical mechanical planari- zation of copper in acetic acid and dodecyl sulfate solu- tions [J]. Thin Solid Films, 2009, 517(16) : 4587.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部