期刊文献+

基于SDNA-GA优化的模糊神经网络控制 被引量:1

Optimal design of fuzzy neural network controller based on SDNA genetic algorithm
原文传递
导出
摘要 针对最新的生物DNA研究,病毒中同一DNA碱基顺序可以编码出2条或者3条不同的多肽链.在此基础上分析与模仿了重叠基因和重叠密码的机理,得到一种新的基于重叠基因编码框架,从而提高了问题求解的效率;同时,得到一种移码解读框架的DNA遗传算法(SDNA-GA)计算模型,并将其应用于一类广义隶属度型T-S模糊神经网络控制器(GTS-FNNC)的优化设计,实现了GTS-FNNC的在线学习. According to the latest biological research of DNA, the virus in the same DNA base sequence can encode two or three different polypeptide chains. Further analysis and imitation of overlapping genes and password mechanism are inspired by using the above mechanism, and a new overlapping gene encoding framework is found, thereby improving the efficiency of problem solving. A frame shift interpretation framework based on this mechanism of DNA genetic algorithm(SDNA-GA) computing model is applied to a class of the generalized membership type T-S fuzzy neural network controller(GTS-FNNC) optimization design to achieve GTS-FNNC online learning.
出处 《控制与决策》 EI CSCD 北大核心 2014年第4期731-734,共4页 Control and Decision
基金 国家自然科学基金项目(60924002)
关键词 重叠基因编码框架 自适应变异 SDNA编码框架 遗传算法 T-S模糊神经网络 overlapping gene encoding framework: adaptive mutation: SDNA encoding framework: genetic algorithm T-S fuzzy network
  • 相关文献

参考文献11

  • 1李银山,杨春燕,张伟.DNA序列分类的神经网络方法[J].计算机仿真,2003,20(2):65-68. 被引量:15
  • 2崔光照,李小广,张勋才,王延峰,李翠玲.基于改进的粒子群遗传算法的DNA编码序列优化[J].计算机学报,2010,33(2):311-316. 被引量:28
  • 3许世明,张强.基于遗传粒子群算法的DNA编码优化[J].计算机工程,2008,34(1):218-220. 被引量:7
  • 4陈霄,王宁.基于混沌DNA遗传算法的模糊递归神经网络建模[J].控制理论与应用,2011,28(11):1589-1594. 被引量:9
  • 5任立红,丁永生.一种采用重叠基因的DNA编码方法[C].中国控制与决策学术会议.郑州,2002:472-475.
  • 6张庆灵,朱宝彦.T-S模糊广义系统的分析与控制[M].北京:国防工业出版社,2011:12-15.
  • 7Ren L H, Ding Y S. Design of fuzzy control system by a new DNA-based immune genetic algorithm[C]. Proc of the 10th IEEE Int Conf on Fuzzy Systems. Melbourne, 2008: 244-247.
  • 8Xutao Deng, Jun Xu. Multiplicity adjustment for intersection-union test: Detecting overlapping genes from multiple microarray gene lists[C]. Computer and Computational Sciences, Second International Multi- Symposiums on. Iowa City, 2007: 52-59.
  • 9Jang J-S R. Neuro-fuzzy model and control[J]. IEEE, 1955, 83(3): 378-406.
  • 10Shin S Y, Lee I H. Multiobjective volutionary optimization of DNA sequences for reliable DNA computing[J]. IEEE Trans on Evolutionary Computation, 2005, 9(2): 143-158.

二级参考文献36

  • 1王高平,王永骥.改进的多目标遗传算法在营养决策中应用[J].计算机工程与应用,2007,43(4):198-200. 被引量:7
  • 2Cui Guangzhao,Niu Yunyun,Wang Yanfeng,Zhang Xuncai,Pan Linqiang.A new approach based on PSO algorithm to find good computational encoding sequences[J].Progress in Natural Science:Materials International,2007,17(6):712-716. 被引量:11
  • 3李银山 王拉娣 等.数学建模案例分析[M].海洋出版社,1999..
  • 4NIE J H, LOH A P, HANG C C. Modeling pH neutralization pro- cesses using fuzzy-neural approaches[J]. Fuzzy Sets and Systems, 1996, 78(1): 5 - 22.
  • 5LIN C J, CHEN C H. A compensation-based recurrent fuzzy neural network for dynamic system identification[J]. European Journal of Operational Research, 2006, 172(2): 696 - 715.
  • 6BARBOUNISA T G, THEOCHARIS J B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation[J]. Neurocomputing, 2007, 70(7/9): 1525 - 1542.
  • 7PARK S, BHARGAVA S, CHASE G. Fitting of kinetic parameters of NO reduction by CO in fibrous media using a genetic algorithm[J]. Computer & Chemical Engineering, 2010, 34(4): 485 - 490.
  • 8CHOI JN, OH SK, PEDRYCZ W. Identification of fuzzy models us- ing a successive tuning method with a variant identification ratio[J]. Fuzzy Sets and Systems, 2008, 159(21): 2873 - 2889.
  • 9KHALED B. Genetic algorithm for the design of a class of fuzzy controller: an alternative approach[J]. IEEE Transactions on Fuzzy Systems, 2008, 8(8): 398 -405.
  • 10TAO J L, WANG N. DNA computing based RNA genetic algo- rithm with applications in parameter estimation of chemical engineer- ing processes[J]. Computers & Chemical Engineering, 2007, 31(12): 1602- 1618.

共引文献55

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部