期刊文献+

混沌遗传算法对BP神经网络的改进研究 被引量:6

An Improvement to the BP Neural Network Algorithm Based on the Chaos Genetic Algorithm
下载PDF
导出
摘要 BP神经网络算法是目前应用最广泛的一种神经网络算法,但有收敛速度慢和易陷入局部极小值等缺陷.本文利用混沌遗传算法(CGA)具有混沌运动遍历性、遗传算法反演性的特性来改进BP神经网络算法.该算法的基本思想是用混沌遗传算法对BP神经网络算法的初始权值和初始阈值进行优化.把混沌变量加入遗传算法中,提高遗传算法的全局搜索能力和收敛速度;用混沌遗传算法优化后得到的最优解作为BP神经网络算法的初始权值和阈值.通过实验观察,改进后的结果与普通的BP神经网络算法的结果相比,具有更高的准确率. The BP neural network algorithm is the most common neural network algorithm with a wide range of practi- cal applications. However it has several defects such as slow convergence speed and easiness to getting stuck into lo- cal optima. In this paper by making use of the ergodicity and recurrence of the chaotic genetic algorithm ( CGA ) , a new algorithm is proposed to improve the BP neural network algorithm. The basic idea is to optimize the initial weights and threshold of the BP network algorithm and to add chaotic variables to improve the global searching ability and con- vergence speed. The optimal resuhs of the chaotic genetic algorithm are used as the initial weights and threshold of the BP network algorithm. The effectiveness of our improved BP neural network algorithm is demonstrated by some nu- merical examples.
出处 《数学理论与应用》 2014年第1期102-110,共9页 Mathematical Theory and Applications
基金 上海市一流学科建设资助项目(S1201YLXK) 上海市教育委员会科研创新重点项目(14ZZ131) 上海市研究生创新基金资助项目(JWCXSL1302)
关键词 混沌 遗传算法 BP神经网络 智能算法 Chaos Genetic 'algorithm BP neural network Intelligent algorithm
  • 相关文献

参考文献12

二级参考文献74

共引文献778

同被引文献49

  • 1赵红嘎,薛禹胜,汪德星,葛敏辉,李碧君.计及PMU支路电流相量的状态估计模型[J].电力系统自动化,2004,28(17):37-40. 被引量:58
  • 2李明章,焦映厚,涂奉臣,陈照波,阚利宏.磁流体-泡沫金属阻尼器减振性能的研究[J].哈尔滨工业大学学报,2006,38(2):177-179. 被引量:5
  • 3严太山.基于遗传算法的神经网络学习算法研究[J].湖南理工学院学报(自然科学版),2007,20(1):31-34. 被引量:15
  • 4Mittas N, Andreas S. Integrating non-parametric models with linear components for producing software cost estimations [ J ]. Journal of Systems and Software ,2015,99 ( 1 ) : 120-134.
  • 5Boehm B W. Software cost estimation with COCOMO II[ M ]. Is. l. ] :Prentice Hall PTR,2009.
  • 6Seo Yeong-Seok ,Jeffery R. Software effort estimation based on multiple regressions with adaptive recursive data partitioning [J]. Information and Software Technology, 2013,55 ( 10 ) : 1710-1725.
  • 7Nassif A B, Ho D. Towards an early software estimation using log-linear regression and a multilayer perceptron model [ J]. Journal of Systems and Software,2013,86( 1 ) :144-160.
  • 8Matt Benjamin, Kirsten M Pondman, Sarah J Asshoff. Soft magnets f~om the self-organization of magnetic nanoparticles in twisted liquid crystals [J]. Angewandte Chemie-International Edition, 2014, 53(46): 12446- 12450.
  • 9Ivanov A S, Pshenichnikov A F. Vortex flows induced by drop-like aggregate drift in magnetic fluids [J]. Physics of Fluids, 2014, 26(1): 299-301.
  • 10Liu P S, Liang K M. Functional materials of porous metals made by P/M, electroplating and some other techniques [J]. Journal of Materials Science, 2001, 5059-5072.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部