期刊文献+

基于属性论的自动摘要技术

Automatic Summarization Based on the Attribute Theory Method
下载PDF
导出
摘要 最近几年越来越多的人使用互联网收集信息,与此同时,互联网的可用信息正呈指数级增长,信息增长成为每个用户必须面对的问题。用户想要大概地了解一篇文章的大概意思有很多方式,其中最主要的方式是通过摘要,因此自动生成摘要是一项重要任务。通过属性论方法,建立一个接近于自然语言的属性坐标知识库,找到文本的关键字,通过知识图谱来自动生成文本摘要。 In recent years, more and more people use the Internet to gather information, while the available information of the Internet are times growing. The increase of the information is the problem that each users must face. There are many ways to get the meaning of a dozen ar-ticles. The most important way is through the summary. So automatically generated summary is an important task. Proposes an attribute theory method to create a property that close to natural language knowledge base coordinates. Through finding this article keywords to au-tomatically generate a text summary.
出处 《现代计算机》 2014年第6期13-16,共4页 Modern Computer
关键词 属性论 自动摘要 自然语言处理 Attribute Theory Method Automatic Summarization Natural Language Processing
  • 相关文献

参考文献7

  • 1陈淑栋,李卫握.基于最大熵的自动文摘技术研究[D].云南:昆明理工大学硕士论文,2013.
  • 2王斌,冯嘉礼.基于属性坐标系的知识库没汁[D].上海:上海海事大学硕士论文,2013.
  • 3高俊波,栾翠菊,王晓峰.新的关键字提取算法研究[J].计算机工程与设计,2008,29(3):765-767. 被引量:6
  • 4Ch. Jayaraju, Zareena Noor Basha, E. Madhavarao, M. Kalyani. An Automatic Process to Convert Documents into Abstracts by Using Natural Language Processing Techniques. Department of Computer Science & Engineering, Vignan's Lara Institute of Technology and Science, Guntnr, A.P., India.
  • 5Stanford NLP[EB/OL]. http://www-nlp.stanford.edu/software/corenlp.shtml.
  • 6HyperGraphDB[EB/OL], http://www.hypergraphdb.org/index.
  • 7Mihalcea, Rada, Tarau, Paul. TextRank :Bringing Order into Texts, UNT Digital Library, July 2004.

二级参考文献8

  • 1Sebastiani F. Machine learning in automated text categorization [J].ACM Computing Surveys, 2002,34(1): 1-47.
  • 2Paolo Frasconi, Giovanni Soda, Alessandro Vullo. Text categorization for multi-page documents: A hybrid naive Bayes HMM approach[C].Roanoke, Virginia, USA: ACM/IEEE Joint Conference on Digital Libraries, IEEE, 2001:11-20.
  • 3Hobbs Jerry R. Information extraction from biomedical text[J]. Journal of Biomedical Informatics,2002,35(4):260-264.
  • 4Oirvan M, Newman M E J. Community structure in social and biological networks [J]. Proceedings of National Academy of Sciences, 2002,99(12):7821-7826.
  • 5Kongachandra R, Kimpant C, Suwanapong T, et al. Newly-born keyword extraction under limited knowledge resources based on sentence similarity verification[C]. IEEE International Symposium on Communications and Information Technology, 2004: 1183-1187.
  • 6Hidalgo J M G. Evaluating cost-sensitive unsolicited bulk email categorization[C]. Proceedings of ACM Symposium on Applied Computing,2002:615-620.
  • 7Alani H, Kim S, Millard D, et al. Automatic ontology-based knowledge extraction from web documents[J]. IEEE Intelligent Systems,2003,18( 1): 14-21.
  • 8Schneider K. A comparison of event models for nave Bayes antispam E-Mail filtering[C]. Budapest, Hungary: Proc 10th Conference of the European Chapter of the Association for Computational Linguistics,2003:307-314.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部