期刊文献+

基于稀疏表示的图像超分辨率重建 被引量:1

Image Super-Resolution Reconstruction Based on Sparse Representation
下载PDF
导出
摘要 针对单幅低分辨率灰度图像,提出一种基于稀疏表示和多成分字典学习的超分辨率重建算法。对于输入的低分辨率图像,通过训练两个字典,并根据每一个图像块在高分辨率字典上的稀疏表示产生高分辨率图像输出。为了提高重建图像的质量,对稀疏字典设计方法进行改进,采用K-SVD方法对图像进行MCA分层,提取出图像中的Texture和Cartoon部分,用于字典的学习和超分辨率的重建。仿真实验结果表明,改进的算法在图像信噪比上有所提高。 Proposes a super-resolution reconstruction approach of single gray image based on sparse representation and multi component-dictionary learning. For each patch of the low-resolution input image, considers a sparse representation to train two dictionaries and then uses the coefficients of this representation to generate the high-resolution output image. In order to improve the quality of the reconstructed image, improves the design method of the sparse dictionary using the method of K-SVD layered image in MCA to extract the components of Tex-ture and Cartoon in the image for dictionary learning and super-resolution reconstruction. The results of simulation experiment show that the method leads to an improvement in PSNR.
出处 《现代计算机》 2014年第6期35-39,44,共6页 Modern Computer
关键词 稀疏表示 图像超分辨率 多成分字典 Sparse Representation Image Super-Resolution Multiple Component-Dictionary
  • 相关文献

参考文献14

  • 1沈松,朱飞,姚琦,王鹏飞.基于稀疏表示的超分辨率图像重建[J].电子测量技术,2011,34(6):37-39. 被引量:11
  • 2Freeman W T,Jones T R, Pasztor E C. Example-based Super-resolution[J] .IEEE Computer Graphics and Applications, 2002,22 (2) : 56-65.
  • 3Yang J C,Wright J,Huang T,et al. Image super-Resolution as Sparse Representation of Raw Image Patches [C]. Proc.of IEEE Conference on Computer Vision and Pattern Recogni-tion. Washington, DC, USA:IEEE Computer Society,2008:1-8.
  • 4Yang J C,Wright J,Huang T,et al. Image Super-Resolution Via Sparse Representation [J]. IEEE Transactions on Image Processing, 2010,19( 11 ) :2861-2873.
  • 5Chang H,Yeung D Y,Xiong Y. Super-Resolution Through Neighbor Embedding[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, D C, June 27-July 2,2004,1 : 275-282.
  • 6Li X G,Lam K M,Qiu G P,et al. Example-Based Image Super-Resolution with Class-Specific Predictors[J]. Journal of Visual Communication and Image Representation (S 1047-3203 ), 2009,20 (5) : 312-322.
  • 7Tang Y,Yan P, Yuan Y, et al. Single-Image Super-Resolution Via Local Learning[J]. International Journal of Machine Loaming and Cybernetics (S 1868-8071 ), 2011,2 ( 1 ) : 15 -23.
  • 8Yang J,Wright J, Huang T,et al. Image Super-Resolution Via Sparse Represention[J]. IEEE Transactions on Image Processing(S1057- 7149) ,2010,19( 11 ) :2861~2873.
  • 9Zeyde R,Elad M,Protter M. On Single Image Scale-up Using Sparse Representations [C]. Proceedings of the 7th International Con- ference on Curves and Surfaces, Avignon, France, June 24-30,2012,6920 : 711-730.
  • 10Dong W,Zhang L, Shi G,et al. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regul- arization [J]. IEEE Transactions on Image Processing(S1057-7149),2011,20(7) : 1838-1857.

二级参考文献4

共引文献10

同被引文献12

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2Yang J C, Wright J, Huang T, et al. Image super -resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA: IEEE Computer Society, 2008: 1-8.
  • 3Yang J C, Wright J, Huang T, et al. Image Super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 4Elad M. Sparse and Redundant Representations[M]//The Super- resolution ,4lgorithm. [s.L]: Springer Press, 2010.
  • 5Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]//Lecture Notes in Computer Science, Curves and Surfaces. Heidelberg: Springer Press, 2012, 6920:711-730.
  • 6Zhang J, Zhao C, Xiong R, et al. Image super -resolution via dual- dictionary learning and sparse representation[C]//IEEE International Symposium on Circuits and Systems, Seoul, Korea, May 20-23, 2012: 1688-1691.
  • 7Kjersti Engan, Karl Skrettin, John H~tkon Huswy. Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation[J]. Digital Signal Processing, 2007, 17( 1): 32-49.
  • 8Mairal J, Bach F, Ponce J, et aL Online dictionary learning for sparse coding[C]//International Conference on Machine Learning, 2009: 689-696.
  • 9Aharon M, Elad M, Bruckstein A. K-svd: an algorithm for designing over complete dictionaries for sparse representation[J]. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 10Glasner Daniel, Shai Bagon, Michal Irani. Super-resolution from a single image[C]//IEEE 12th International Conference on Computer Vision, 2009:349-356.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部