摘要
对图G(V ,E) ,及二值函数 f:V→ { 0 ,1}记 f[v]={u|u∈N[v],且f(u) =1} ,其中N[v]={u|vu∈E} ∪ {v} .若 f满足任意v∈V ,|f[v]|≥ 1,则称f为G的一控制函数 ,并称 f(V) = v∈Vf(v)为 f的权 ;图的控制数γ(G)定义为图的控制函数的最小权 ,即γ(G) =min{ |f(V) |f为G的一控制函数 } .类似的可定义图的边控制数 .本文建立了确定图的控制数的Hopfield网络型和算法 .
Let G(V,E) be a graph,a two-value functionf:V→{0,1} is a domination function of G if its function value over any closed neighborhood is at least one.The weight of a domination function is f(V)=v∈Vf(v).The domination number of a graph G,denoted by γ(G), equals the minimum weight of a domination function of G.In this paper, a neural network model of the domination number problem is constructed and the algorithm is studied.
出处
《兰州铁道学院学报》
2000年第6期94-95,共2页
Journal of Lanzhou Railway University
基金
国家自然科学基金资助项目(No.19871036)