期刊文献+

均值模型下满足对数级收敛速度的动态系统(英文)

Logarithmic Convergence for Consensus of Dynamic Systems
下载PDF
导出
摘要 文章研究了在均值模型下,动态系统收敛至一致性状态所需的时间。在每一时间步内,节点计算其邻居的均值,并以计算结果作为自己的新值。我们考虑了当节点间的网络结构处于动态变化状态的情况。我们的分析证明了当节点的度在相邻时间点之间变化较小的情况下,即使仅满足微弱的连通性条件,动态变化的网络仍然可以保证动态系统会快速收敛到一致性状态。 In this paper, the convergence time required to achieve consensus of dynamic systems was studied under the uniform averaging model. In each time step, a node's value was updated to some weighted average of its neighbors' and its old values. The case was studied when the underlying network was dynamic. Our analysis results show that dynamic networks exhibit fast convergence behavior as long as the nodes' degrees change gradually, even under very mild connectivity assumptions
作者 宁立
出处 《集成技术》 2014年第2期27-34,共8页 Journal of Integration Technology
关键词 对数级收敛 一致性 动态系统 logarithmic convergence consensus dynamic system
  • 相关文献

参考文献1

  • 1Jorge Cortés.Finite-time convergent gradient flows with applications to network consensus[J].Automatica.2006(11)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部