期刊文献+

M/M/1抢占优先权排队平稳指标的尾部分析 被引量:4

TAIL ANALYSIS FOR STATIONARY INDICES OF M/M/1PREEMPTIVE PRIORITY QUEUE
原文传递
导出
摘要 讨论M/M/1抢占优先权排队模型,该模型可以用一个具有可数位相的拟生灭(QBD)过程来描述.对该过程,我们得到平稳状态时低优先权顾客数分布的概率母函数,结果表明它不是一个有理函数.在此基础上,进一步指出,对该过程,低优先权顾客的平稳队长和平稳逗留时间分别具有几何衰减和指数衰减的特性. This paper considers an M/M/1 preemptive priority queue. The queue model can be described in a quasi-birth-and-death (QBD) process with infinitelymany phases. For the QBD process, we give the PGF for the stationary distribution of lower-priority customers. ~rthermore, we indicate that the tails of the stationary distributions of queue length and sojourn time for lower-priority customers have the characteristic of geometric decay and exponential decay, respectively.
出处 《系统科学与数学》 CSCD 北大核心 2014年第1期1-9,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60874083 61174160) 中南大学博士后基金(125011)资助课题
关键词 抢占优先权排队 QBD过程 平稳指标 几何衰减 指数衰减 Preemptive priority queue, QBD process, stationary indices, geometricdecay, exponential decay.
  • 相关文献

参考文献17

  • 1Miller D R. Computation of steady-state probabilities for M/M/I priority queues. Operations Research, 1981, 29: 945-958.
  • 2Neuts M F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Baltimore: The Johns Hopkins University Press, 1981.
  • 3Gail H R, Hantler S L, Taylor B A. Analysis of a non-preemptive priority multiserver queue. Advances in Applied Probability, 1988, 20: 852-879.
  • 4Kao E P C, Narayanan K S. Computing steady-state probabilities of a non-preemptive priority multiserve queue. ORSA Journal on Computing, 1990, 2: 211-218.
  • 5Isotupa K P S, Stanford D A. An infinite-phase quasi-birth-and-death model for the nonpreemptive priority M/PH/I queue. Stochastic Models, 2002, 18: 387-424.
  • 6Alfa A S, Liu B, He Q M. Discrete-time analysis of MAP IPH/I multiclass general preemptive priority queue. Naval Research Logistics, 2003, 50: 662-682.
  • 7Breuer L, Baum D. An Introduction to Queueing Theory: And Matrix-Analytic Methods. Netherlands: Springer, 2005.
  • 8Zhao J A, Li B, Cao X R, Ahmad I. A matrix-analytic solution for the DBMAP IPH/I priority queue. Queueing Systems, 2006, 53: 127-145.
  • 9Latouche G, Ramaswami V. Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Applied Probability, 1999.
  • 10Zhang H B, Shi D H. Explicit solution for M/M/I preemptive priority queue. International Journal of Information and Management Sciences, 2010, 21: 197-208.

同被引文献38

  • 1田乃硕.PH-启动时间的 GI/M/1排队[J].数学的实践与认识,1993,23(4):1-7. 被引量:4
  • 2王建军,杨德礼.带启动-关闭期的多重休假M/G/1排队[J].燕山大学学报,2005,29(1):8-12. 被引量:11
  • 3岳德权,赵玮.具有延误休假的GI/M/1排队系统[J].运筹学杂志,1994,13(1):33-38. 被引量:2
  • 4赵国喜,陈燕,薛晓东.非强占优先权下的M/M/1排队[J].大学数学,2006,22(1):44-48. 被引量:4
  • 5KIM K. T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks [J]. Computers and Operations Research, 2012, 39 (7) 1394.
  • 6White H, Christie L. Queueing with preemptive priorities or with breakdown [J]. OperationsResearch, 1958, 6(1): 79-95.
  • 7Miller D. Computation of steady-state probabilities for M/M/1 priority queues [J]. OperationsResearch, 1981, 29: 945-958.
  • 8Alfa A, Liu B, He Q. Discrete-time analysis of MAP/PH/1 multiclass general preemptivepriority queue [J]. Naval Research Logistics, 2003, 50: 23-50.
  • 9Zhao J, Li B, Cao X, et al. A matrix-analytic solution for the DBMAP/PH/1 priority queue[J]. Queueing Systems, 2006,53: 127-145.
  • 10Zhang H, Shi D. Explicit solution for M/M/1 preemptive priority queue [J]. InternationalJournal of Information and Management Sciences, 2010, 21: 197-208.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部