摘要
讨论M/M/1抢占优先权排队模型,该模型可以用一个具有可数位相的拟生灭(QBD)过程来描述.对该过程,我们得到平稳状态时低优先权顾客数分布的概率母函数,结果表明它不是一个有理函数.在此基础上,进一步指出,对该过程,低优先权顾客的平稳队长和平稳逗留时间分别具有几何衰减和指数衰减的特性.
This paper considers an M/M/1 preemptive priority queue. The queue model can be described in a quasi-birth-and-death (QBD) process with infinitelymany phases. For the QBD process, we give the PGF for the stationary distribution of lower-priority customers. ~rthermore, we indicate that the tails of the stationary distributions of queue length and sojourn time for lower-priority customers have the characteristic of geometric decay and exponential decay, respectively.
出处
《系统科学与数学》
CSCD
北大核心
2014年第1期1-9,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(60874083
61174160)
中南大学博士后基金(125011)资助课题
关键词
抢占优先权排队
QBD过程
平稳指标
几何衰减
指数衰减
Preemptive priority queue, QBD process, stationary indices, geometricdecay, exponential decay.