期刊文献+

一类广义隐互补问题的投影组合算法

A LINEAR COMBINATORIAL PROJECTION METHOD FOR A CLASS OF GENERALIZED IMPLICIT COMPLEMENTARITY PROBLEMS
原文传递
导出
摘要 隐互补问题在自然科学中的诸多领域有着广泛的应用.研究了一类广义隐互补问题.利用外梯度法的两种改进算法构造了新的投影迭代算法,并将其应用到这类广义隐互补问题中,研究了在伪单调的条件下算法的收敛性,并讨论了新算法的参数和校正步长的选择方法. Implicit complementarity problem (ICP) can be applied to many fileds of natural science. In this article, we study a class of generalized implicit complemen- tarity problems. We suggest a linear combinatorial projection method based on two improved extra-gradient methods. And the linear combinatorial projection method is used to solve ICP. The linear combinatorial projection method is applied to gener- alized implicit complementarity problem and its convergence with pseudomonotone function is proven. Finally, the choice for the step size correction and the parameters of the method is discussed.
出处 《系统科学与数学》 CSCD 北大核心 2014年第1期43-52,共10页 Journal of Systems Science and Mathematical Sciences
基金 江苏省高校自然科学研究项目(2KJB110006) 教育部人文社科规划项目(11YJA910001)资助课题
关键词 广义隐互补问题 投影组合算法 线性收敛性 校正步长 Generalized implicit complementarity problem, the linear combinatorialprojection method, linearly convergence, step size correction.
  • 相关文献

参考文献10

  • 1Cottle R W. Note on a fundamental theorem in quadratic programming. Journal of the Society of Industrial and Applied Mathematics, 1964, 12(3): 663-665.
  • 2Cottle R W, Dantzig G B. Complementary pivot theory in mathematical programming. Eds. by Dantzig G B, Veinott A F, Jr. Mathematics of the Decision Sciences, Part 1. American Mathematical Society, Providence, 1968, 115.
  • 3Korpelevich G M. The extragradient method for finding saddle points ad other problems. Matecon, 1976, 12: 747.
  • 4He B S, Yuan X M, Zhang J Z. Comparison of two kinds of prediction-correction methodsfor monotone variational inequalities. Comput. Optim. Appl., 2004, 27: 247-267.
  • 5Yan, X H, Han, D R, Sun, W Y. A self-adaptive projection method with improved step-size for solving variational inequalities. Computers Mathematics with Applications, 2008, 55: 819-832.
  • 6Xu M H, Yuan X M, Huang Q L. An improved general extra-gradient method with refined step size for nonlinear monotone variational inequalities. Journal of Global Optimization, 2007, 39: 155-169.
  • 7韩继业,修乃华,戚厚铎.非线性互补理论与算法.上海:上海科学技术出版社,2003.
  • 8Ahmad K, Kazmi K R, Rehman N. Fixed-point technique for implicit comlementarity problem in Hilberet lattice. Journal of Optimization Theory and Applications, 1997, 93: 72-97.
  • 9郑邦贵,殷洪友.一类广义隐互补问题的外梯度法[J].应用数学学报,2011,34(4):734-742. 被引量:3
  • 10Noor M A. Projection iterative methods for extended general variational inequalities. J. Appl. Math. Comput., 2010, 32: 83-95.

二级参考文献10

  • 1Goldstein A A. Convex Programming in Hilbert Space, 1964, 70:709-710.
  • 2Levitin E S, Polyak B T. Constrained Minimization Problems. J. USSR Comput. Math. Math. Phys., 1966, 6:1-50.
  • 3Korpelevich G M. The Extragradient Method for Finding Saddle Points ad other Problems. J. Matecon, 1976, 12:747-756.
  • 4韩继业,修乃华,戚厚铎.非线性互补理论与算法.上海:科学技术出版社,2003.
  • 5Ahmad K, Kazmi K R, Rehman N. Fixed-point technique for implicit comlementarity problem in Hilberet lattice. J. Journal of Optimization Theory and Applications, 1997, 93:72-97.
  • 6Calamai P H, More J J. Projected Gradient Methods for Linearly Constrained Problems. J. Math. Programming, 1987, 39:93-116.
  • 7Vyacheslav V, Kalashnikov. Solvability of Implicit Complementarity Problems. J. Annals of Opera- tions Research, 2002, 116:199-221.
  • 8Noor M A. Change of Variable Method for Generalized Complementarity. J. Problems Journal Of Optimization Theory and Applications, 1999, 389--395.
  • 9Noor M A. Projection Iterative Methods for Extended General Variational Inequalities. J. Appl. Math. Comput., 2010, 32:83-95.
  • 10Iusem A N, Svaiter B F. A Variant of Korpelevich's Method for Variational Inequalities with a New Search strategy. J. Optimization, 1997, 42:309-321.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部