期刊文献+

含分布时滞的不确定中立系统鲁棒稳定之时滞分解法 被引量:1

DELAY-DECOMPOSITION APPROACH FOR THE ROBUST STABILITY OF UNCERTAIN NEUTRAL SYSTEMS WITH DISTRIBUTED DELAYS
原文传递
导出
摘要 研究了一类同时具有离散与分布时滞的不确定中立型系统的鲁棒稳定性问题,基于时滞分割方法建立一种新的时滞相关鲁棒稳定性条件.通过把时滞区间非均匀的分解成N份,针对不同的分割区间构造合适的Lyapunov-Krasovskii(L-K)泛函,结合积分不等式处理方法建立了基于线性矩阵不等式(LMI)形式的时滞相关条件,该方法不包含任何的模型变换和自由权矩阵技术,减少了理论与计算上的复杂性,最后的数值算例仿真表明,该方法扩大了系统稳定的时滞上界范围,相比已有结论具有更低的保守性. This paper deals with the problem of robust stability of uncertain neutral systems with distributed delays. A new delay-dependent stability condition is derived by using the delay-decomposition approach. Firstly, by non-uniformly dividing the delay interval into N segments, a new appropriate Lyapunov-Krasovskii (L-K) func~ tional for each segment is constructed. Then, with the integral inequality approach, a new delay-dependent stability condition is formulated in terms of linear matrix inequalities. The proposed approach involves neither model transformation nor free~ weighting matrix, so the complexity is reduced both in theory and in computation. Numerical examples show that the proposed method enlarge the more conservative upper bound for the delay-range.
出处 《系统科学与数学》 CSCD 北大核心 2014年第1期86-95,共10页 Journal of Systems Science and Mathematical Sciences
关键词 中立系统 Lyapunov—Krasovskii(L—K)泛函 时滞分解 鲁棒稳定 线性矩阵不等式(LMI) Neutral system, Lyapunov-Krasovskii (L-K) functional, delay decompo-sition, robust stability, linear matrix inequality (LMI).
  • 相关文献

参考文献20

  • 1Gu K, Kharitonov V L, Chen J. Stability of Time-Delay Systems. Basel: Birkhauser, 2003,1-17.
  • 2Zheng F, Frank P M. Robust control of uncertain distributed delay systems with application to the stabilization of combustion in rocket motor chambers. Automatica, 2002, 38(3): 487-497.
  • 3Han Q L. A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. Automatica, 2004, 40(10): 1791-1796.
  • 4Chen W H, Zheng W X. Delay-dependentrobust stabilization for uncertain neutral systems with distributed delays. Automatica, 2007, 43(1): 95-104.
  • 5Li X G, Zhu X J. Stability analysis of neutral systems with distributed delays. Automatica, 2008, 44(8): 2197-220l.
  • 6Zeng H B, Xiao S P, Liu B. Improved delay-dependent stability criteria for systems with interval delay. Journal of Systems Engineering and Electronics, 2011, 22(6): 998-1002.
  • 7曾红兵,何勇,吴敏.具有非线性扰动的时滞系统的稳定性.中国科技论文在线精品论文,2012,5(S):777-783.
  • 8Lapin A V. An improved delay-dependent criterion for stability of uncertain neutral systems with mixed time delays. Lobachevskii Journal of Mathematics, 2013, 34(1): 36-44.
  • 9Xu S Y, Lam J. On equivalence and efficiency of certain stability criteria for time-delay systems. IEEE Transactions on Automatic Control, 2007, 52(1): 95-1Ol.
  • 10Gu K, Han Q L, Luo A C J, Niculescu S I. Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. International Journal of Control, 2001, 74(7): 737-744.

同被引文献11

  • 1Deng F Q, Mao W H, Wan A H. A novel result on stabilityanalysis for uncertain neutral stochastic time-varying delaysystems [J]. Applied Mathematics and Computation, 2013,221(c): 132-143.
  • 2Sakthivel R, Mathiyalagan K,Marshal Anthoni S. Robuststability and control for uncertain neutral time delaysystems [J], Int J of Control, 2012, 85(4): 373-383.
  • 3Cheng J, Zhu H, Zhong S, et al. Novel delay-dependent robust stability criteria for neutral systems withmixed time-varying delays and nonlinear perturbations [J].Applied Mathematics and Computation, 2013, 219(14):7741-7753.
  • 4Lu R, Wu H, Bai J. New delay-dependent robust stabilitycriteria for uncertain neutral systems with mixed delays [J].J of the Franklin Institute, 2014, 351(3): 1386-1399.
  • 5Kwon O M, Park M J,Park Ju H, et al. New delay-partitioning approaches to stability criteria for uncertainneutral systems with time-varying delays[J]. J of theFranklin Institute, 2012,349(9): 2799-2823.
  • 6Chen H, Zhang Y, Zhao Y. Stability analysis for uncertainneutral systems with discrete and distributed delays[J].Applied Mathematics and Computation, 2012, 218(23):11351-11361.
  • 7Park P, Jeong W, Jeong C. Reciprocally convex approachto stability of systems with time-varying delays [J].Automatica, 2011,47(1): 235-238.
  • 8Gu K Q. An integral inequality in the stability problemof time-delay systems [C]. Proc of the 39th IEEE Conf onDecision Control. Sydney, 2000: 2805-2810.
  • 9Wang L, Zhang W. Robust disturbance attenuation withstability for linear systems with norm-bounded nonlinearuncertainties[J], IEEE Trans on Automatic Control, 1996,41(1): 886-888.
  • 10李涛,张合新,孙鹏.含离散与分布时滞的不确定中立型系统鲁棒稳定性新判据[J].控制理论与应用,2010,27(11):1537-1542. 被引量:4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部