期刊文献+

铁对产铁载体的沼泽红假单胞菌光合色素与铁载体合成的影响 被引量:10

Influence of iron on siderophore and photosynthetic pigments biosynthesis by siderophore-producing Rhodopesudomonnas palustris
原文传递
导出
摘要 【目的】探求铁对1株能产生铁载体的不产氧光合细菌(Anoxygenic Phototrophic Bacteria,APB)光合色素和铁载体合成的影响。【方法】通用CAS法检测铁载体产生,Arnow、Csaky和Shenker法检测铁载体类型;吸收光谱法和HPLC法分析光合色素的组分和含量。【结果】Rhodopseudomonas palustris CQV97能够产生异羟肟酸型铁载体,未添加FeCl3时,铁载体含量最高,铁载体的产生与生长并非关联型。随FeCl3浓度升高,菌体生长潜伏期缩短,生长速率、最终生物量以及细菌叶绿素(Bacteriochlorophyll,BChl)a和类胡萝卜素(Carotenoid,Car)含量均提高,而检测到的游离铁载体含量降低;菌体积累的BChl a的组成和相对含量未见明显变化,但主要的Car组分由Spirilloxanthin转化为Rhodopin,菌体中积累Car组分的平均共轭体系降低,Car组成的改变与色素提取液的Car特征性光谱蓝移现象相吻合。【结论】首次报道APB能够产生铁载体,CQV97菌株能够产生异羟肟酸型铁载体。阐明了铁对CQV97生长、铁载体产生和光合色素合成的影响规律,这些研究结果为深入开展APB铁载体分离纯化以及生物功能研究奠定了基础。 [ Objective ] To explore the regulation of iron on siderophore production, cell growth and photosynthetic pigments biosynthesis by siderophore-producing anoxygenic phototrophic bacteria. [ Methods] Siderophore production was determined using Chrome Azurol S (CAS) assay. The siderophore types were determined by Arnow method, Csaky test and Shenker test. The compositions and contents of photosynthetic pigments were determined by spectrophotometry and HPLC analysis. [Results] Rhodopseudomonas palustris (Rps. palustris) CQV97 was capable of producing hydroxamatetype of siderophore. Siderophore production reached the highest yield in the absence of ferric chloride. With increasing ferric chloride concentrations, the lag phase of cell growth was shortened, and the cell growth rate, final biomass and the total amounts of carotenoid and bacteriochlorophyll a were increased significantly. The characteristic absorption maxima of carotenoids from pigment extracts were blueshifted. Iron concentration had little effect on the compositions and relative contents of bacteriochlorophylls a, whereas predominately affected carotenoid compositions, rhodopin was present as major carotenoid component instead of spirillxanthin. Culture tends to accumulate the Cars having shorter conjugated double bonds at the expense of longer conjugated double bonds as the ferric chloride concentration increased. The changes in carotenoid composition were consistent with those of the blue shift of absorption spectra of pigment extracts. [ Conclusion ] Rps. palustris CQV97 can produce siderophore and the changes in microbial growth, siderophore production and photosynthetic pigments accumulation of anoxygenic phototrophic bacteria are related to the iron concentration in the medium.
出处 《微生物学报》 CAS CSCD 北大核心 2014年第4期408-416,共9页 Acta Microbiologica Sinica
基金 国家自然科学基金(31070054 31270106) 福建省自然科学基金(2012J01136)~~
关键词 不产氧光合细菌 沼泽红假单胞菌 铁载体 细菌叶绿素 类胡萝卜素 Rhodopesudomonas palustris, siderophore, bacteriocbloropbyll, carotenoid, anoxygenic phototrophic bacteria
  • 相关文献

参考文献4

二级参考文献32

  • 1FENG Juan, WANG Qian, ZHANG Xujia, HUANG Youguo, Al Xicheng, ZHANG Xingkang & ZHANG JianpingState Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.Spectroscopic evidence for triplet excitation energy transfer among carotenoids in the LH2 complex from photosynthetic bacterium Rhodopseudomonas palustris[J].Science China Chemistry,2004,47(1):80-90. 被引量:8
  • 2朱长喜 陈秉俭 宋鸿遇.镍对荚膜红假单胞菌氢酶和固氮酶活性的促进作用[J].微生物学报,1987,27(1):52-56.
  • 3Kulp TR, Hoeft SE, Madigan M, Madigan MT,Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW,Miller LG, Oremland RS. Arsenic ( M ) fuels anoxygenicphotosynthesis in hot spring biofilms from Mono Lake,California. Science, 2008, 321 (5914) : 967-970.
  • 4Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW,HoeftSE, Pett-Ridge J,Stolz JF, Webb SM,Weber PK,Davies PCW,Anbar AD,Oremland RS. A bacterium thatcan grow by using arsenic instead of phosphorus. Science,2011,332 (6034) : 1149-1153.
  • 5Rosen BP. Biochemistry of arsenic detoxification. FEBSLetters, 2002, 592 (I) : 86-92.
  • 6Tsai SL, Singh S, Chen W. Arsenic metabolism bymicrobes in nature and the impact on arsenic remediation.Current Opinion in Biotechnology, 2009, 20 (6) : 659-667.
  • 7Dworkin M, Falkow S, Rosenberg E, Schleifer KH,Stackebrandt E. The Prokaryotes: a handbook on thebiology of bacteria. 3rd Edition. New York: Springer,2006,32-85.
  • 8Hunter CN,Daldal F,Thumauer MC, Beatty J Th. Thepurple phototrophic bacteria. The Netherlands: Springer,2009,577-689.
  • 9Qin J,Rosen BP, Zhang Y, Wang GJ, Franke S,Rensing C. Arsenic detoxification and evolution oftrimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of theNational Academy of Sciences, 2006,103 ( 7 ) : 2075-2080.
  • 10Stolz JE,Basu P,Santini JM,Oremland RS. Arsenic andselenium in microbial metabolism. Annual Review ofMicrobiology, 2006,60 (2) : 107-130.

共引文献122

同被引文献128

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部