期刊文献+

车牌字符的类欧几里得距离特征提取与分析 被引量:4

Feature Extracting of License Plate Character Based on Euclidean-Like Distance Transform
下载PDF
导出
摘要 在自动车牌识别系统的设计中,为了实现汉字、字母、数字的快速准确识别,需要一种能够同时提取车牌字符中汉字、字母、数字的统一分类特征,研究利用脉冲耦合神经网络的自动波扩散特性,简化模型参数,提取每个汉字、字母、数字的类欧几里得距离图像,将其作为分类特征,采用最小方差方法测试了特征的有效性。针对不同省市的民用车牌的实验测试结果表明,简化脉冲耦合神经网络模型的卷积核矩阵为5×5时所得的类欧几里得距离图像作为特征向量时,测试图像与标准图像之间的所得方差值最小,能够实现正确匹配。简化脉冲耦合神经网络的类欧几里得距离变换优于传统基于神经网络的特征提取方法,充分利用了图像边缘的形状信息,能够有效地进行分类识别,为汉字、字母、数字全网互联提供了一种统一标准的特征提取方法。 In order to recognize the Chinese characters, letters, and numbers quickly and accurately in automatic number plate recognition system, a unified classification feature is needed. So automatic wave diffusion characteristic of Pulse Coupled Neural Networks (PCNN) was adopted to extract feature vectors form the Euclidean like distance images of each Chinese character, letters, and numbers. Parameters of PCNN wer simplified simultaneously. Then a minimum variance method was utilized to test the validity of this feature vectors. Experimental results based on civil ian license plate from different provinces show that the Euclidean like distance images based on simplified pulse coupled neural network model with 5 x 5 convolution kernel matrix can obtain the smallest square difference between the test images and standard image. Euclidean like distance transform takes full advantage of the shape of the edge of the image, acquire better results than the traditional artificial network based features extraction method for classi fication of the characters.
出处 《计算机仿真》 CSCD 北大核心 2014年第4期184-187,284,共5页 Computer Simulation
基金 河北省高等学校科学技术研究青年基金项目(2010121)
关键词 车牌字符 脉冲耦合神经网络 类欧几里得距离 最小方差值 license plate character pulse coupled neural networks Euclidean - like distance transform mini-mum variance.
  • 相关文献

参考文献12

二级参考文献89

共引文献131

同被引文献35

  • 1郑洁,罗军勇,芦斌.基于统计特征值的文件类型识别算法[J].计算机工程,2007,33(1):142-144. 被引量:7
  • 2周芳芳,樊晓平,叶榛.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. 被引量:59
  • 3DARWIN I F. Libmagic[ EB/OL]. [ 2015- 03- 30]. ftp://ftp, as- tron. eom/pub/file.
  • 4McDANIEL M, HEYDARI M H. Content based file type detection algorithms[ C]//Proceedings of the 36th Annual Hawaii Internation- al Conference on System Sciences. Washington, DC: IEEE Comput- er Society, 2003, 9: 332.1.
  • 5ROUSSEV V, GARFINKEL S L. File fragment classification: the case for specialized approaches[C]// Proceedings of the 4th International IEEE Workshop on Systematic Approaches to Digital Forensic Engineer- ing. Washington, DC: IEEE Computer Society, 20139:3-14.
  • 6GRIBBLE S D, MANKU G S, ROSELLI D, et al. Serf-similarity in file systems[ C]// Proceedings of ACM SIGMETRICS ' 98. New York: ACM, 1998:141 - 150.
  • 7LI W, WANG K, STOLFO S J, et al. Fileprints: identifying file types by n- gram analysis [ C ]// Proceedings of the 6th IEEE Sytems, Man and Cybernetics Information Assurance Workshop. Piscataway: IEEE, 2005:64 -71.
  • 8解素芳,焦淑静.对查全率与查准率关系的几点认识[J].医学信息,2013,26(9):24.
  • 9AMIRANI M C, TOORANI M, SHIRAZI A A B. A new approach to content-based file type detection[ C]// ISCC'08: Proceedings of the 13th IEEE Symposium on Computers and Communicaitons. Pis- caraway: IEEE, 2008:1103 - 1108.
  • 10CONTI G, BRATUS S, SHUBINA A, et al. Automated mapping of large binary objects using primitive fragment type classification [ J]. Digital Investigation, 2010, 7(Supplement) : S3 - S12.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部