摘要
在自动车牌识别系统的设计中,为了实现汉字、字母、数字的快速准确识别,需要一种能够同时提取车牌字符中汉字、字母、数字的统一分类特征,研究利用脉冲耦合神经网络的自动波扩散特性,简化模型参数,提取每个汉字、字母、数字的类欧几里得距离图像,将其作为分类特征,采用最小方差方法测试了特征的有效性。针对不同省市的民用车牌的实验测试结果表明,简化脉冲耦合神经网络模型的卷积核矩阵为5×5时所得的类欧几里得距离图像作为特征向量时,测试图像与标准图像之间的所得方差值最小,能够实现正确匹配。简化脉冲耦合神经网络的类欧几里得距离变换优于传统基于神经网络的特征提取方法,充分利用了图像边缘的形状信息,能够有效地进行分类识别,为汉字、字母、数字全网互联提供了一种统一标准的特征提取方法。
In order to recognize the Chinese characters, letters, and numbers quickly and accurately in automatic number plate recognition system, a unified classification feature is needed. So automatic wave diffusion characteristic of Pulse Coupled Neural Networks (PCNN) was adopted to extract feature vectors form the Euclidean like distance images of each Chinese character, letters, and numbers. Parameters of PCNN wer simplified simultaneously. Then a minimum variance method was utilized to test the validity of this feature vectors. Experimental results based on civil ian license plate from different provinces show that the Euclidean like distance images based on simplified pulse coupled neural network model with 5 x 5 convolution kernel matrix can obtain the smallest square difference between the test images and standard image. Euclidean like distance transform takes full advantage of the shape of the edge of the image, acquire better results than the traditional artificial network based features extraction method for classi fication of the characters.
出处
《计算机仿真》
CSCD
北大核心
2014年第4期184-187,284,共5页
Computer Simulation
基金
河北省高等学校科学技术研究青年基金项目(2010121)
关键词
车牌字符
脉冲耦合神经网络
类欧几里得距离
最小方差值
license plate character
pulse coupled neural networks
Euclidean - like distance transform
mini-mum variance.