期刊文献+

基于用户行为模型和蚁群聚类的协同过滤推荐算法 被引量:6

Collaborative Filtering Recommendation Based on Ant Colony Clustering and User Behavior
下载PDF
导出
摘要 协同过滤技术是推荐系统中应用最为广泛的技术之一,用户的相似性度量是整个算法的核心要素,会对推荐算法准确率产生很大的影响。传统的协同过滤算法过度依赖用户评分机制,影片自身的标签信息没有被考虑为一个影响因素,在用户聚类时采用K近邻算法,会由于评分矩阵过于稀疏而难以收敛。同时,传统推荐技术仅基于用户历史行为进行推荐,无法为新用户提供合理的推荐。针对以上问题,提出了一种基于用户行为建模的蚁群聚类和协同过滤算法相结合的影片推荐技术。 Collaborative Filtering Recommendation (CFR) is one of the most widely used technologies in recommendation systems, in which the measurement of user similarity is the core element and can affect the accuracy of results a lot. Traditional CFR only depends on the movie ratings of users. As a result, it generates very different results when different individuals rate movies according to their personal standards. The performance of K-means clustering method is hard to converge when the matrix of user ratings is very sparse. As the traditional CFR only depends on the rating history of users, when a new user registers in the system, traditional CFR can hardly give desirable results. It cannot recommend movies to users according to the movie which the target user is watching or just watched, either. To solve the above problems, a kind of algorithm is proposed based on Ant Colony Clustering and user beha- vior to combine with traditional CFR algorithm.
出处 《微型电脑应用》 2014年第3期5-8,共4页 Microcomputer Applications
基金 上海市科委科研计划项目12dz1500203 上海市科委科研计划项目12511504902资助
关键词 推荐 用户行为 协同过滤 蚁群聚类 Recommendation User Behavior Collaborative Filtering Recommendation Ant Colony Clustering
  • 相关文献

参考文献2

二级参考文献18

  • 1孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 2Gemmis De M,et al.Preference learning in recommender systems .In ECML/PKDD-09 Workshop on Preference Learning .Bled,Slovenia:Springer-Verlag,2009.41-55.
  • 3Jung SY,Hong JH,Kim TS.A statistical model for user preference[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):834-843.
  • 4Bettini C,et al.A survey of context modelling and reasoning techniques[J].Pervasive and Mobile Computing,2009,6(2):161-180.
  • 5Stefanidis K,Pitoura E.Fast contextual preference scoring of database tuples .Proc EDBT'08 .German:Springer-Verlag,2008.344-355.
  • 6Adomavicius G,Tuzhilin A.Context-aware recommender systems .Recommender Systems Handbook[M].Springer Press,2011.217-253.
  • 7Jembere E,Adigun MO,Xulu SS.Mining context-based user preferences for m-services applications .Proc IEEE/WIC/ACM International Conference on Web Intelligence (WI'07) .Washington,DC:IEEE Computer Society,2007.757-763.
  • 8Jason J J.Contextualized mobile recommendation service based on interactive social network discovered from mobile users[J].Expert Systems with Applications,2009,36(9):11950-11956.
  • 9Kuo MH,Chen LC,et al.Building and evaluating a location-based service recommendation system with a preference adjustment mechanism[J].Expert Systems with Applications,2009,36(2):3543-3554.
  • 10Wang LC,Meng XW,Zhang YJ and Shi YC.New approaches to mood-based hybrid collaborative filtering .Proc ACM CAMRa'10 .New York:ACM Press,2010.28-33.

共引文献34

同被引文献64

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2MALTON1 D, MAIO D, JAIN.A handbook of fingerprint recognication [ M ]. Berlin, Springer, 2009.
  • 3LINDEN G, SMITH B ,YORK J.Amazeon.com recommenda- tions : item- to- item collaborative filtering [J]. IEEE Internet Computing, 2003,7(1) : 76-80.
  • 4SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M].Berlin Heidelberg : Springer, 2007 : 291- 324.
  • 5SUN X H, KONG F S,YE S.A comparison of several algorithms for collaborative filtering in startup stage[C]. Proceedings of the 2006 IEEE International Conference onNetworking, Sensing and Controlling.Washington, DC : IEEE Computer Society, 2006 : 25-28.
  • 6ZHAO Z D,SHANG M S.User-based collaborative-filtering recommendation algorithms on hadoop[C].Third International Conference on Knowledge Discovery and Data Mining. Thailang : IEEE, 2010 : 478-481.
  • 7JIANG J,LU J,ZHANG G,et al.Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop[C].2011 IEEE World Congress on Services(SER- VICES). Washington : IEEE, 2011 : 490-497.
  • 8COVER T M,THOMAS J A.Elements of information theory [ M ]. [ S. 1. ] : Wiley- Interscience, 2006.
  • 9张海燕,郑媛.基于DEA法改进的物流服务供应商筛选问题研究[J].中国市场,2008(23):67-71. 被引量:2
  • 10陶茂华,张仲义.基于个性化需求的服务供应链初探[J].物流技术,2010,29(19):87-90. 被引量:5

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部