期刊文献+

非线性三阶两点边值问题变号解的逐次逼近方法 被引量:1

Successively Approximate Method of Sign-changing Solution to a Nonlinear Third-order Two-point Boundary Value Problem
下载PDF
导出
摘要 本文研究了一个非线性三阶两点边值问题变号解的存在性与逐次逼近,其中非线性项关于空间变元单调增并且关于时间变元奇异.利用Green函数,将该问题转化为一个等价积分方程,其中相伴积分算子是全连续并且增的.在适当的条件下借助于全连续增算子构造了两个逐次迭代序列.这些序列从常值函数开始并且一致收敛于此问题的变号解.结论说明这种变号解的存在性仅仅依赖于非线性项在某个有界集合上的增长,而与非线性项在这个集合以外的状态无关.最后,数值算例证实新的逼近方法对于数值计算是有效的. In this paper, the existence and the successive approximation of sign-changing so-lutions are studied for a nonlinear third-order two-point boundary value problem, in which the nonlinear term is monotone increasing in the space variable and is singular in the time variable. By employing the Green function, the problem is transformed into an integral equation in which the associated integral operator is completely continuous and increasing. Under some suitable conditions, two successively iterative sequences are constructed by applying the completely continuous increasing operator. The sequences start with the constant functions and uniformly converge to the sign-changing solutions of the problem. The result indicates that the existence of sign-changing solutions only depends on the growth of the nonlinear term on a bounded set and is independent of the states of nonlinearity outside the set. Finally, the numerical example demonstrates that the new approximate method is effective for the numerical simulation.
作者 姚庆六
出处 《工程数学学报》 CSCD 北大核心 2014年第2期166-172,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11071109)~~
关键词 非线性边值问题 逐次逼近方法 变号解 迭代序列 nonlinear boundary value problem successively approximate method sign-changing solution iterative sequence
  • 相关文献

参考文献12

  • 1Gregus M. Third Order Linear Differential Equations[M]. Dordrecht: Kluwer Academic Publishers, 1987.
  • 2Cabada A, Lois S. Existence of solution for discontinuous third order boundary value problems[J]. Journal of Computational and Applied Mathematics, 1999, 110(1): 105-114.
  • 3Yao Q L. Solution and positive solution to a class of semilineax third-order two-point boundary value problems[J]. Applied Mathematics Letters, 2004, 17(4): 1171-1175.
  • 4Li S H. Positive solutions of nonlinear singular third-order two-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2): 413-425.
  • 5Liu Z Q, Ume I, Kang S. Positive solutions of a singular nonlinear third-order two-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2007, 326(3): 589-601.
  • 6E1-Shahed M. Positive solutions for nonlinear singular third-order boundary value problem[J]. Communi- cations Nonlinear Science and Numerical Simulation, 2009, 14(2): 424-429.
  • 7姚庆六.一类非线性二阶三点边值问题的单调迭代方法[J].高等学校计算数学学报,2003,25(2):135-143. 被引量:5
  • 8姚庆六,江秀芬.带变号系数的广义Gelfand模型的正解迭代方法[J].工程数学学报,2004,21(4):649-652. 被引量:3
  • 9Yao Q L. Monotonically iterative method of nonlinear cantilever beam equations[J]. Applied Mathematics and Computation, 2008, 205(1): 432-437.
  • 10Yao Q L. An iterative method for a class of qualinear boundary value problems[J]. Journal Computational and Applied Mathematics, 2009, 230(1): 306-311.

二级参考文献15

  • 1Gupta, C.P.. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl., 1992, 108:540-551.
  • 2Gupta, C.P.. A sharper condition for the solvability of a three-point second-order boundary value problem. J. Math. Anal. Appl., 1997, 205:579-586.
  • 3Ma, R.Y.. Existence theorems for a second order three-point boundary value problem. J.Math. Anal. Appl., 1997, 212:430-441.
  • 4Ma, R.Y.. Positive solutions for a nonlinear three-point boundary value problem. Electronic Journal of Differential Equations, 1999, 34:1-8.
  • 5Ma, R.Y.. Multiplicity of positive solutions for second-order three-point boundary value problems. Comput. and Math. Appl., 2000, 40:193-204.
  • 6Ladde, G.S., Lakshmikantham, V. and Vatsala, A.S.. Monotone iterative techniques for nonlinear differential equations. Pitman Advanced Publishing Program, Boston, London, Melbourne,1989.
  • 7Guo, D.J. and Lakshmikamtham, V.. Nonlinear problems in abstract cones. New York: Academic Press,1988.
  • 8姚庆六,白占兵.一类奇异二阶系统边值问题的正解[J].Journal of Mathematical Research and Exposition,2001,21(2):241-246. 被引量:8
  • 9江秀芬,姚庆六.一个带变号的半线性两点边值问题的正解存在定理(英文)[J].应用数学,2001,14(3):68-71. 被引量:5
  • 10姚庆六.系数变号时经典Emden方程的两点边值问题的正解(英文)[J].应用泛函分析学报,2001,3(2):107-111. 被引量:3

共引文献5

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部