期刊文献+

基于新概率密度函数的ICA盲源分离

ICA Blind Signal Separation Based on a New Probability Density Function
下载PDF
导出
摘要 基于独立分量分析(Independent Component Analysis,ICA),利用极大似然估计法,研究了超高斯和亚高斯的混合信号的盲源分离(Blind Sources Separation,BSS)问题.文中构造了一种新的、不同于以往文章中用来分离混合信号的概率密度函数(Probability Density Function,PDF).新构造的PDF无需改变函数中的参数值,可用来对于超高斯和亚高斯信号的概率密度进行估计(假设未知源信号是相互独立的).数值实验验证了新构造的PDF的可行性,与原算法相比,收敛时间和分离效果都得到了较大的改善. This paper is concerned with the blind source separation (BSS) problem of super-Gaussian and sub-Gaussian mixed signal by using the maximum likelihood method, which is based on independent component analysis (ICA) method. In this paper, we construct a new type of probability density function (PDF) which is different from the already existing PDF used to separate mixed signals in the previously published papers. Applying the new constructed PDF to estimate probability density of super-Gaussian and sub-Gaussian signals (assuming the source signals are independent of each other), it is not necessary to change the parameter values artificially, and the separation work may be performed adaptively. Numerical experiments verify the feasibility of the newly constructed PDF, and the convergence time and the separation effect are improved compared with the original algorithm.
出处 《工程数学学报》 CSCD 北大核心 2014年第2期173-180,共8页 Chinese Journal of Engineering Mathematics
关键词 独立分量分析 极大似然估计 盲源分离 概率密度函数 independent component analysis maximum likelihood estimation blind sources separation probability density function
  • 引文网络
  • 相关文献

参考文献9

  • 1Cichocki A, Amari S. Adaptive Blind Signal and Image Processing[M]. New York: Wiley, 2002.
  • 2Comon P. Independent component analysis, a new concept?[J]. Signal Process, 1994, 36(3): 287-314.
  • 3Hyvarinen A, Oja E. Independent component analysis algorithm and application[J]. Neural Networks Re- search Centre, 2000, 13(4-5): 411-430.
  • 4Solvang H K, et al. Frequency-domain Pearson distribution approach for independent component analysis (FD-Pearson-ICA) in blind source separation[J]. Institute of Electrical and Electronics Engineers, 2009, 17(4): 639-649.
  • 5乔永凤,马建芬.独立分量分析技术在语音信号处理中的应用[J].电脑开发与应用,2007,20(4):22-23. 被引量:2
  • 6Lee T W, Girolami M, Sejnowksi T J. Independent component analysis using an extend infomax algorithm for mixed sub-Caussian and super-Gaussian sources[J]. Neural Computation, 1999, 11(2): 417-441.
  • 7Pearlmutter B, Parra L. A context-sensitive generalization of ICA[C]// In International Conference on Neural Information Processing, 1996:151-157.
  • 8杨福生,洪波.独立分量分析的原理及应用[M].北京:清华大学出版社,2006.
  • 9Bofill P, Zibulevsky M. Undertermined blind source seperation using sparse representation[J]. Signal Pro- cess, 2001, 81(11): 2353-2362.

二级参考文献3

  • 1JUTTEN C, HERAULT J. Blind separation of source, Part Ⅰ: An adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing. 1991,24(1):1-10.
  • 2P Comon, Independent component analysis, a new concept? [J]. Signal Processing, 1994,36 : 287-314.
  • 3Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Trans. Signal Processing, 1996, 44:3 017-3 029.

共引文献1

;
使用帮助 返回顶部