期刊文献+

CeO_2纳米八面体高压结构相变的Raman研究(英文) 被引量:1

High-pressure Raman Study on the Structural Stability of CeO_2 Nano-octahedrons
原文传递
导出
摘要 利用高压原位拉曼光谱技术研究了非静水条件对CeO2纳米八面体高压结构相变的重压影响。研究表明:在非静水条件下(无传压介质),当压力达到26 GPa时,CeO2纳米八面体发生由立方萤石型结构到正交α-PbCl2型结构的可逆结构相变,相变压力低于相应的体材料(30 GPa)。相反,在准静水压条件下,CeO2纳米八面体的相变压力为33 GPa,高于其体材料。研究表明,实验条件对CeO2纳米八面体结构稳定性具有重要影响。 The effect of nonhydrostatic conditions on high pressure phase transition on CeO2 nano- octahedrons were studied using in situ high-pressure Raman spectroscopy. Under non-hydrostatic conditions (with no pressure medium) the CeO2 nano-octahedrons underwent a reversible phase transition from fluorite phase to a-PbC12 phase at 26 GPa, which is lower than the bulk counterpart. In contrast, the CeO2 nano-octahedrons under hydrostatic conditions are shown to be more stable than the bulk. The transition pressure from cubic to orthorhombic phase is approximately 3 GPa higher than bulk materials. These results show that experimental conditions have an important ef- fect on the structural stability of CeO2 nano-octahedrons.
出处 《光散射学报》 北大核心 2014年第1期32-36,共5页 The Journal of Light Scattering
基金 国家自然科学基金(10979001,51025206,51032001,21073071,11004075,50972020) 国家重点基础研究发展计划(973计划)项目(2011CB808200) 中国长江学者计划
关键词 二氧化铈纳米八面体 高压 实验条件 结构稳定性 CeO2 nano-octahedrons, high pressure, experimental conditions, structural stability
  • 相关文献

参考文献16

  • 1Grtinwald M, Rabani E, Dellago C. Mechanisms of the Wurtzite to Rocl~salt Transformation in CdSe Nanocrystals [J]. Phys Rev Lett, 2006, 96(25): 255701/1-4.
  • 2Wang Z L, Quan Z W, Jia P Y, et al. A Facile Synthe- sis and Photoluminescent Properties of Redispersible CeF~, CeF3:Tb~~, and CeF~:Tba +/LaF3 (Core/Shell) Nanopartieles [J]. Chem Mater , 2006, 18(8): 2030- 2037.
  • 3Hearne G R, Zhao J, Dawe A M, et al. Effect of grain size on structural transitions in anatase TiO2: A Ra- man spectroscopy study at high pressure [J]. Phys Rev B, 2004, 70(13): 134102/1-10.
  • 4San-Miguel A. Nanomaterials under high-pressure [J]. Chem Soc Rev, 2006, 35(10): 876-889.
  • 5Wang Y, Zhang J, Wu J, et al. Phase Transition and Compressibility in Silicon Nanowires [J]. Nano Lett, 2008, 8(9): 2891-2895.
  • 6Wickham J N, Herhold A B, Alivisatos A P. Shape Change as an Indicator of Mechanism in the High- Pressure Structural Transformations of CdSe Nano- crystals [J]. Phys Rev Lett, 2000, 84(5): 923-926.
  • 7Wang L, Yang W, Ding Y, et al. Size-Dependent Amorphization of Nanoscale Y20, at High Pressure [J]. Phys Rev Lett, 2010, 105(9): 095701/1-4.
  • 8Swamy V, Kuznetsov A Y, Dubrovinsky L S, et al. Un- usual Compression Behavior of Anatase TiO2 Nano-crystals [J]. Phys Rev Lett, 2009, 103(7): 075505/1-4.
  • 9Gatta G D, Kantor 1, Boffa Ballaran T, et al. Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study [J]. Phys Chem Miner, 2007, 34(9): 627-635.
  • 10Longhurst M J, Quirke N. Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption [J]. Phys Rev Lett, 2007, 98(14): 145503/1-4.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部