期刊文献+

多尺度几何分析阈值去噪的比较研究 被引量:1

A comparative study of Multiscale Geometric Analysis thresholding method
下载PDF
导出
摘要 多尺度几何分析方法用于图像去噪已经成为图像处理方向的研究的一个热点。简要介绍和分析了几种常用于去噪的多尺度几何分析方法(曲波变换、轮廓波变换、剪切波变换),其中剪切波能提供了更稀疏的表示,图像实现最优逼近。实验结果也证明,剪切波变换阈值去噪在主观视觉上与峰值信噪比优于其他多尺度分析方法。 The Multiscale Geometric Analysis has become a hot spot in the current method of image denoising. After a brief introduction about some Multiscale Geometric Analysis methods in common use(Curvelet, Contourlet, Shearlet), Shearlet transform provides more sparse decomposition than others, and can capture the best approximation of image.Experimental results show that Shearlet-based thresholding can obtain better performance in terms of both Peak Signal-to-Noise Ratio and subjective evaluations than other three Multiscale Geometric Analysis methods.
作者 文学霖 袁华
出处 《大众科技》 2014年第3期13-14,17,共3页 Popular Science & Technology
基金 广西自然科学基金(No.2013GXNSFDA019030 2013GXNSFAA019331 2012GXNSFBA053014 2012GXNSFAA053231) 广西科技开发项目(桂科攻1348020-6 桂科能1298025-7) 广西教育厅项目(No.201202ZD040 201202ZD044 2013YB091)
关键词 多尺度几何分析 图像去噪 阈值 Multiscale Geometric Analysis image denoising thresholding
  • 相关文献

参考文献6

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2J.L. Starck, E.J. Candes. The Curvelet transform for image denoising[J].IEEE Trans. On Image Proc.,2002, Vo1.11(6): 670-684.
  • 3E.J.Candes,L.Demanet, D.L.Donoho.Fast discrete curvelet transform[C].Technology Report,Applied and Computational Mathematics.California Institute of Technology,2005,5(3), 861-899.
  • 4Minh N.Do,Martin Vetterli.The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005,Vol.14(12): 2091-2106.
  • 5A.L.Cunha,J.Zhou,M.N.Do.The nonsubsampled contourlet transform:theory, design, and applications[J].IEEE Trans. on Image Proc,2006,Vol.15(10):3089-3101.
  • 6Kutyniok, G., & Labate, D. Construction of regular and irregular shearlet frames. J. Wavelet Theory,2007,Appl, 1 (1), 1-12.

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部